REPORT

Tonkin+Taylor

Ground Contamination Assessment - Kyle Park, Hornby

Prepared for Christchurch City Council Prepared by Tonkin & Taylor Ltd Date November 2018 Job Number 1003207.v2

Exceptional thinking together www.tonkintaylor.co.nz

Document Control

Title: G	Title: Ground Contamination Assessment - Kyle Park, Hornby												
Date	Version	Description	Prepared by:	Reviewed by:	Authorised by:								
Nov 2018	1	Draft for CCC review	MDDM/KPS	PEW	-								
Nov 2018	2	Post CCC review	MDDM/KPS	PEW	GAA								

This report has been prepared for the exclusive use of our client Christchurch City Council, with respect to the particular brief given to us and it may not be relied upon in other contexts or for any other purpose, or by any person other than our client, without our prior written agreement.

Recommendations and opinions in this report are based on data from discrete sampling locations and sampled materials. The nature and continuity of subsoil away from the reported locations are inferred and it must be appreciated that actual conditions could vary from the assumed model.

Tonkin & Taylor Ltd

Report prepared by:

Mark Morley Control Co

Authorised for Tonkin & Taylor Ltd by:

Gordon Ashby

Gordon Ashby Project Director

Report certified by a suitably qualified and experienced practitioner as prescribed under the NES Soil:

Paul Walker Contaminated Land Specialist

mddm p:\1003207\issueddocuments\1003207_ground contamination assessment_kyle park_version 02.docx

Distribution:

Christchurch City Council Tonkin & Taylor Ltd (FILE) 1 copy (digital) 1 copy

Table of contents

1	Intro	duction	1
	1.1	General	1
	1.2	Project background	1
	1.3	Objective and scope of work	2
	1.4	Regulatory compliance	2
2	Site D	Description	3
	2.1	Site identification	3
	2.2	Site condition	3
	2.3	Geology, hydrogeology and hydrology	3
		2.3.1 Geology	3
		2.3.2 Hydrogeology	4
		2.3.3 Hydrology	4
3	Site H	History and Potential for Contamination	5
	3.1	Site history	5
	3.2	Previous ground investigation	6
	3.3	Known and potential contamination	7
	3.4	Preliminary conceptual site model	7
4		nvestigation, Laboratory Testing and Data Assessment	9
	4.1	Investigation staging and rationale	9
	4.2	Sampling procedures	9
	4.3	Field observations	10
		4.3.1 Capping materials	10
		4.3.2 Landfill	10
		4.3.3 Natural strata	11
		4.3.4 Groundwater	11
	4.4	Laboratory testing	11
		4.4.1 Assessment criteria	11
	4 5	4.4.2 Data assessment results	12
_	4.5	Revised conceptual site model	13
5		ission	15
	5.1	Development context	15
	5.2	Contaminant distribution	15
	5.3 5.4	Remediation or management for future use Construction and maintenance worker health and safety	16 16
	5.4 5.5	Soil disturbance, reuse and offsite disposal	10
	5.5 5.6	Consenting	17
	5.0 5.7	Further investigation	18
c			
6	Conci	lusions	19
Appe	ndix A	A: Figures	
Appe	ndix B	B: Photographs	

Appendix C :	Borehole Logs and	Field Screening Data
	0	0

- Appendix D : Laboratory Result Transcripts
- Appendix E : Laboratory Results Data Assessment

1 Introduction

1.1 General

Tonkin & Taylor Ltd (T+T) was commissioned by the Christchurch City Council (CCC) to carry out a ground contamination assessment for the proposed combined Hornby Library, Customer Services and South West Leisure Facility (*the Centre*). The purpose of the ground contamination assessment is to identify ground contamination-related development issues associated with the site of the centre at Kyle Park, Hornby. This work has been completed in accordance with CCC Statement of Work agreement with T+T dated 17 August 2018 and subsequent variations.

Kyle Park is located immediately north of the Hornby Hub shopping mall, which is in south-west Christchurch.

CCC is considering developing the Centre on the eastern part of Kyle Park, with a preferred option for this to be in the eastern corner of the site. Figure 1 below shows the following areas and terms that are used hereafter in this report:

- Kyle Park red polygon below.
- The *site* (i.e. subject of this investigation and assessment) green polygon below.
- The *development area* (i.e. preferred location for the centre) blue polygon below.

Figure 1 – Kyle Park location (source Canterbury maps https://apps.canterburymaps.govt.nz/CanterburyHistoricAerialImagery/)

1.2 Project background

Detailed design of the Centre has not been finalised at the time of writing. Concept level design envisages the following:

- Two storey service building and library, including community meeting rooms and offices.
- Leisure facility including swimming pools (fun pool and lane pool), courts and a sport hall (multifunctional).

- Car parking, landscaping areas and footpaths connecting the Centre to the remainder of the park and underpass beneath the railway and connection to the transport links at Hornby Hub.
- Floor level for the Centre will be similar to existing ground levels on the adjacent Waterloo Road.
- Provision of utilities/services to the centre (e.g. water, power, telecommunications) which may include trenching across the current park.
- Based on the design and construction of the QEII recreational centre for CCC, the groundworks for the pool and plant room/services may extend to approximately 3 m depth.

The whole of Kyle Park was formerly a gravel pit (see Section 3) and was backfilled with a mix of uncontrolled fill materials (i.e. domestic, commercial and industrial waste materials). We understand that the CCC requires an understanding of the contaminated land-related implications and constraints associated with developing the Centre here compared to a relatively "clean" site.

A report summarising the findings of a geotechnical investigation of the site, also completed by T+T, has been provided separately to CCC¹.

1.3 Objective and scope of work

The following scope of work has been completed by T+T for the purposes of this ground contamination assessment:

- Review previous T+T reports on the site.
- Review of historical aerial photographs.
- Drilling of 20 boreholes to depths of up to 15.65 m below ground level (bgl).
- Logging the boreholes and collecting representative soil samples for laboratory analysis.
- Laboratory analysis of samples for a range of contaminants of concern based on the historical land use activities on the site.
- Assess the laboratory data against criteria applicable for the development of the Centre including commercial/industrial land use, as well as offsite disposal acceptance criteria.
- Preparation of this report.

1.4 Regulatory compliance

This ground contamination assessment, including the design and supervision of the fieldwork, the investigation management, data assessment and certification have been undertaken by suitably qualified and experienced practitioners (SQEPs) in accordance with the requirements of the NES Soil². The contents of this report constitute a detailed site investigation (DSI) as defined in the NES Soil and described in the NES Users' Guide³.

¹ T+T – Kyle Park Geotechnical Assessment Report – version 1 (draft) November 2018.

² Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health Regulations) 2011.

³ Ministry for the Environment (MfE) – Users' Guide – National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health – April 2012.

2 Site Description

2.1 Site identification

The locations details of Kyle Park, the site and the preferred development area are provided in Table 2.1 below.

Table 2.1Site details

Street address	197 Waterloo Road, Hornby
Legal description	Lot 1 DP 78681 and Lot DP 34558 (development area located on Lot 1 DP 78681)
Site owner	ССС
Site area	Kyle Park approximately 87 hectares, with the development area being approximately 1.1 hectares within the boundary of Kyle Park
Zoning	Open space community

2.2 Site condition

General photographs of Kyle Park and the development area are presented in Appendix B. In general the whole park comprises grassed open spaces with areas used for cricket and informal football matches, and is crossed by a number of asphalted footpaths. On the western part of Kyle Park (offsite) there is a BMX race track and landscaped areas including a pond/wetland.

Immediately around the site, land uses are:

- Waterloo Road then Hornby High School and residential properties to the north.
- Commercial and industrial properties to the east and south (latter beyond the main south rail line).
- The remainder of Kyle Park and residential properties to the west.

Ground levels within the preferred development area are approximately 2.5 to 3 m lower than Waterloo Road and the rest of Kyle Park to its west. Relative to the 1937 Lyttelton vertical datum (LVD), ground levels for Waterloo Road, the centre of the site and centre of the development area are approximately 39 to 38 mLVD, 38.5 mLVD and 36.2 mLVD, respectively. Spot heights for the site and investigation boreholes (see Section 6) are presented on the CCC survey drawing included in Appendix A.

2.3 Geology, hydrogeology and hydrology

Details of the site setting are summarised below with more detail provided in the T+T Desktop Report⁴.

2.3.1 Geology

The published geology⁵ of the area indicates that Kyle Park is underlain by alluvial gravel, sand and silt from historic Waimakariri River flood channels. This is collectively referred to as the Yaldhurst Member of the Springston Formation.

3

⁴ T+T reference 53404.002 – Kyle Park, Hornby – Desktop Ground Contamination and Geotechnical Study (September 2015).

⁵ Brown, L.J., Weeber, J.H. 1992: Geology of the Christchurch Urban Area. Institute of Geological & Nuclear Sciences Geological Map 1. Scale 1:25 000.

In the vicinity of the site the Springston Formation deposits are expected to be underlain by wellgraded gravels known as the Riccarton Gravels. These gravels contain artesian groundwater pressures where capped by a low permeability clayey silt or peat layer(s).

Information relating to the filling of the site is discussed in Section 3.

2.3.2 Hydrogeology

The depth to groundwater is approximately 13 m bgl, which corresponds to an elevation of approximately 24 mLvD, as observed from the groundwater contours available on the Environment Canterbury (ECan) website (<u>https://mapviewer.canterburymaps.govt.nz/</u>). The depth to groundwater is expected to fluctuate in response to rainfall and seasonal variability, which could be of the order of ± 2 m.

2.3.3 Hydrology

At the western end of Kyle Park there is a small wetland/retention/stormwater pond with a water level approximately 10 m higher than the groundwater surface elevation. The closest watercourse to the site is approximately 3 km east. Incident rainfall onsite currently infiltrates directly to ground.

3 Site History and Potential for Contamination

The following is summarised from the T+T Desktop Report, which should be referred to for more detailed information.

3.1 Site history

Kyle Park was formerly a gravel pit known as Smart's Pit (after the site owners) that operated until 1968 when it was purchased by Paparua County Council (a predecessor to CCC) and was then used as a rubbish dump (i.e. landfill). The landfill was operational until the early 1970s and the area became known as Kyle Park in the early 1980s.

Historical aerial photographs⁶ of the site show the quarry workings expanding in area from the first available photograph from the early 1940s until the early 1960s when it was then progressively infilled into the mid-1970s (i.e. corroborating the ownership and land use information discussed above). Observation of the 1950s and early 1960s aerial photographs (see Photograph 1 below) identifies areas of water within the base of the pit, which suggests that excavation ceased at around the depth when groundwater was encountered. After infilling ceased some regrading/capping of the site occurred and photographs from the early 1980s onwards show much of Kyle Park as at the present day.

Photograph 1 – early 1960s aerial photograph of Kyle Park– approximate site and development areas shown in green and blue polygons, respectively (source <u>https://apps.canterburymaps.govt.nz/CanterburyHistoricAerialImagery/</u>).

⁶ https://apps.canterburymaps.govt.nz/CanterburyHistoricAerialImagery/.

Photograph 2 – early 1980s aerial photograph of Kyle Park – approximate site and development areas shown in green and blue polygons respectively (source <u>https://apps.canterburymaps.govt.nz/CanterburyHistoricAerialImagery/</u>).

CCC property file records note that the site was backfilled with uncontrolled waste including domestic and commercial/industrial materials. The park is not a consented or monitored closed landfill with ECan. Groundwater and/or landfill gas monitoring is not undertaken on site by CCC as part of their closed landfill monitoring programme.

The property file also records a 1999 plan for CCC having installed a landfill gas ventilation unit in the BMX club hut building located west of the site.

3.2 Previous ground investigation

Previous T+T ground investigation works at Kyle Park (including the site)^{7 8} identified the presence of asbestos containing material (ACM) in embankment areas by the railway line. This included the ground on the southern margin of the development area that is currently occupied by trees and shrubbery on a bank that rises up to the neighbouring industrial/commercial property (see Figure 2, Appendix A). Sampling and laboratory analysis of embankment surficial soils and mulch materials recorded levels of asbestos fibres ranging from <0.001 to 0.0059 % weight/weight with the presence of asbestos fines and fibrous asbestos (AF and FA, see Section 4.4.2). Some measured levels exceeded the "all site" land uses criterion.

The presence of ACM and asbestos fibres was also encountered within capping materials (see Section 4.3.1 – these are the materials at ground level on the site) at depths ranging from the ground surface to 0.5 m bgl, with the levels of asbestos marginally exceeding the "all sites" land use criterion (see Section 4.4). Across the site, 25 samples were analysed for asbestos in soil as part of the December 2015 investigation and 9 samples recorded positive results for ACM and/or AF/FA. The ACM included non-fibrous materials such as cement sheeting, low density board and corrugated sheeting.

The embankment areas where the ACM and the AF/FA were identified are being managed by CCC. This includes the application of dust suppressant polymer and fencing the areas off from the remainder of the park to restrict access. For the grassed park areas including the sports fields where asbestos was found in capping materials, recommended management measures included the exclusion of activities with the potential to disturb surficial soils (e.g. minimise vehicular use) along

⁷ T+T reference 53404.003 - Kyle Park, Hornby – investigation of asbestos in landscaped garden areas (18 November 2015).

⁸ T+T reference 53404.004 – Additional asbestos investigation in soil – Kyle Park, Hornby (7 December 2015).

with procedures to reduce the potential exposure of general Park users and CCC maintenance personnel.

3.3 Known and potential contamination

The site is recorded on the ECan Listed Land Use Register (LLUR) as a landfill site (HAIL⁹ category G3). ECan currently categorise the site as "contaminated – other".

With the site being a landfill and its current use as a sports turf, Table 3.1 below lists the potential contaminants of concern, HAIL category and potential extent/magnitude of ground contamination.

Land use/activity	Potential contaminants	Likelihood, magnitude and possible extent of contamination	HAIL reference
Landfilling	Dependent on original waste composition may include total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), metals, asbestos, pesticides, ammonia, cyanide and volatile organic compounds (VOCs).	Materials are heterogeneous and the likelihood of ground contamination is high and would likely encompass most of the site. Contamination of the groundwater, via leachate, is also likely.	Activity G3 – Landfill sites.
	Potential for landfill gases (including carbon dioxide, methane, depleted oxygen, hydrogen sulphide).	Landfill gas generation possible depending upon composition of waste materials.	
Use of pesticides on playing fields.	Metals, herbicides, organophosphates and possibly organochlorides pesticides (OCPs).	The site has been used as a park since the early 1980s and pesticides may have been applied to the playing fields since this time. Low likelihood of contamination, which (if present) would likely to be restricted to surficial soils in the playing field areas. Investigation work for CCC at other parks by T+T have reported low incidence of pesticides in soils associated with this land use.	Activity A10 – Persistent pesticides bulk storage or use including sport turfs, market gardens, orchards, glass houses or spray sheds.

Table 3.1 – Land use and potential contaminants of concern

3.4 Preliminary conceptual site model

Based on the inferred nature and extent of contamination and indicative development concepts, a preliminary conceptual site model has been developed. This model describes how those involved in the construction of the Centre and future users of the Centre (receptors), may be exposed (pathways) to ground contamination (sources). The model underpins the site investigation rationale set out in Section 4.

⁹ Hazardous activities and industries list – MfE updated 2011.

Source	Pathway(s)	Receptor(s)	Assumptions
Landfill material (contaminated soils)	 Direct contact. Inhalation of dust, vapours, gases. Ingestion of materials. 	 Construction and maintenance workers undertaking ground disturbance. Possibly centre users, staff if allowed to come into contact with landfill material. 	 Significant disturbance during earthworks. Potential for reuse of contaminated material.
Landfill gases (e.g. methane, carbon dioxide), organic vapours	Inhalation.	 Centre users and staff, maintenance workers. 	 Placement of hard cover over currently unsealed ground.
	 Intrusion through foundations, floor slabs, service penetrations. 	 CCC asset – damage to building from explosion. 	 Potential for creation of preferential pathways (e.g. piles). Uncertainty of effect of piling on landfill gas regime.
	 Inhalation of odours, discharges during construction works. 	 General public (park users). 	

Table 3.2 – Preliminary conceptual site model

This preliminary conceptual site model is typical of closed landfill sites that T+T has worked on in Christchurch and elsewhere in New Zealand.

4 Site investigation, Laboratory Testing and Data Assessment

4.1 Investigation staging and rationale

Investigation of the site was undertaken in two stages, these being:

- Stage 1 Boreholes BH101 to BH115 inclusive general coverage of the site.
- Stage 2 BH116 to BH120 inclusive targeted/focused investigation of the development area only, as required by CCC.

Whilst the density of the investigation locations is considered appropriate to provide coverage of the site, it does not meet the maximum density recommended by the MfE¹⁰ for identifying contamination hotspots of a given diameter. However, it should be noted that the distribution of contaminants in the landfill material is assumed to be effectively random, and as such likely heterogeneity does not support an investigation methodology based on hotspot identification.

The boreholes were drilled using sonic drilling with a water flush to a maximum depth of 15.65 m bgl. Samples for laboratory analysis were selected based on site observations, including field screening with a photo-ionisation detector (PID) to identify potential volatile contaminants. Selected samples of the materials recovered from the boreholes were scheduled for the contaminants of concern (refer Section 3.3) as guided by the preliminary conceptual site model (refer Section 3.4).

The borehole locations were surveyed by CCC to record their reduced level along with the northing and easting coordinates (see Appendix A).

The borehole locations are shown in Figure 2 in Appendix A.

4.2 Sampling procedures

Soil samples for laboratory analysis were collected by the supervising T+T geologist and contaminated land specialist. The soil sampling was undertaken in general accordance with the procedures of CLMG No. 5 and the Asbestos in Soil Guidelines¹¹. Samples were collected as follows:

- For metals, hydrocarbons, pesticides etc.:
 - Freshly gloved hands were used to collect a sample, which was placed immediately into laboratory supplied container(s).
 - Any equipment used to collect samples was decontaminated between sampling events using a phosphate-free detergent (Decon 90) and clean water.
 - Samples were shipped in a chilled container under chain of custody (COC) documentation to Analytica Laboratories Ltd; an IANZ-accredited (International Accreditation New Zealand) facility.
- For semi-quantitative asbestos in soil:
 - With freshly gloved hands samples was collected into 500 mL container for laboratory analysis.
 - Remaining borehole arisings were inspected for the presence of man-made materials including ACMs.
 - Samples were shipped under COC documentation to IANZ-accredited Precise Consulting & Laboratory.

¹⁰ Contaminated Land Management Guideline (CLMG) No. 5 – Site investigation and analysis of soils – MfE (updated 2011).

¹¹ New Zealand Guidelines for the Assessment and Management of Asbestos in Soil – BRANZ (November 2017).

4.3 Field observations

The fieldwork (drilling, logging and sampling) was undertaken between 19 September and 11 October 2018, with Stage 1 and Stage 2 occurring concurrently.

The following report sub-sections summarise the strata encountered, with borehole logs presented in Appendix C. PID field screening results are also tabulated in this appendix. The range in thickness of the materials encountered, and the reduced levels they were encountered at, are summarised in Table 4.1 below and are illustrated on the cross-sections presented in Figures 3 and 4 (Appendix A). Photographs to illustrate the strata encountered are provided in Appendix B.

25 to 28.5

Not fully

penetrated

1.25

Not fully penetrated – maximum

thickness recorded 13.05

	Reduced le	vel (mLVD)	Thickn	ess (m)
	Top of strata	Base of strata	From	
Capping	As per ground level	34 to 38	0.4	

34 to 38

25 to 28.5

Table 4.1 – Summary of stratigraphy

4.3.1 Capping materials

Landfill

Natural strata

Capping materials comprising sandy silt with variable quantities of gravel materials with fibrous organics and rootlets were encountered in boreholes across the site. These materials ranged in thickness from 0.4 to 0.9 m. They generally graded into the underlying landfill materials with an increasing man-made material content and presence of organic materials rather than exhibiting a distinct change of strata. No evidence was observed of a geotextile fabric separating the capping materials from landfill.

No ACM was observed in the capping materials during the two stages of the 2018 investigation. This is different from the 2015 investigation when ACM fragments were recovered (albeit infrequently) in capping materials from ground level to 0.5 m depth.

4.3.2 Landfill

Landfill materials were encountered in all boreholes and exhibited a highly variable content both laterally and vertically, and this is typical of similar sites investigated by T+T where uncontrolled filling has occurred. The landfill materials encountered in the boreholes comprised of a variable matrix of silt, sand and gravel with differing quantities of man-made materials and/or waste including:

- ACM including cement sheet materials.
- Ash.
- Brick and concrete.
- Ceramic.
- Glass.
- Leather (including parts of a child's shoe).
- Paper.
- Plastic, including food wrapping.
- Roots, wood and partly decomposed vegetative matter.

To 0.9

11

- Rubber/tyre.
- Sawdust.
- Shell.
- Wire and metal.

Photographs 3 to 6 inclusive (refer Appendix B) illustrate some of the landfill materials observed and sampled across the site. In most cases, the landfill materials in the boreholes were noted to have a high vegetative/organic content, in the order of 50% by volume. The landfill materials were also infrequently noted to have a hydrocarbon odour and the PID site screening recorded volatile organic compounds (VOCs) ranging from 0 to 100 ppm, albeit the majority of readings were <10 ppm. The highest screening value was in material with a strong hydrocarbon odour in BH112 at 9.2 m bgl. Other landfill materials had organic/rotten vegetation odours and at BH101 and BH103 at 72 and 7.4 m bgl respectively, a sweet odour.

BH113 was terminated at 7.6 m bgl after refusal on a buried metal object.

4.3.3 Natural strata

Natural strata were encountered in all boreholes (with the exception of BH113) and comprised of sandy fine to coarse gravels with minor cobbles and trace of silt.

4.3.4 Groundwater

Groundwater strikes were encountered in all the boreholes (except for BH113) at depths ranging from 9.2 to 11.3 m bgl (approximately 29 mLVD and 24.5 mLVD, respectively).

With the exception of BH102 and BH106, groundwater was encountered in natural strata. For these two boreholes, the groundwater was encountered in landfill materials and within 1 m of the boundary with the underlying natural materials.

4.4 Laboratory testing

Representative samples of the capping and landfill materials, and a limited number of samples of natural materials were submitted for laboratory analysis. Individual analysis was based on field observations of material composition, odours and the anticipated contaminants of concern (refer Section 3.3).

Soil samples from all of the boreholes and representative of the capping and landfill materials were collected for laboratory analysis to provide a lateral and vertical assessment of these materials. Samples were scheduled for one or more of the parameters described previously in Section 3.3. Analysis for additional parameters based on PID field screening and observations during the material logging were also scheduled.

The laboratory test results are presented in Appendix D and the assessment of the laboratory data in Appendix E.

4.4.1 Assessment criteria

The laboratory test results have been evaluated against the following human health and environmental assessment criteria for different land uses or activities:

- For metals, hydrocarbons and pesticides industrial and commercial land use NES Soil soil contaminant standards (SCSs) (based on outdoor worker) for:
 - Construction workers and future maintenance workers (e.g. engaged in repairing buried services).

- Future site users (e.g. service centre staff, visitors) considered a conservative criteria for this cohort as on development the site will be hard sealed.
- For re-use of materials on the site (for metal, hydrocarbon and pesticides) recreational land use NES Soil SCS for use as a park with open public access after the development of the Centre.
- Asbestos in Soil Guidelines:
 - All site uses criteria for asbestos in soil criterion of <0.001% weight/weight asbestos fibres and fibrous asbestos (AF and FA, respectively).
 - Recreational land use criterion for bonded ACM of 0.02 % weight/weight (used as a conservative assessment criteria instead of commercial/industrial land use criterion of 0.05 % weight/weight).
- Offsite soil disposal:
 - Generally, to be disposed as cleanfill, soil must meet local background concentrations of contaminants at the cleanfill site and be free of certain man-made materials¹². Data has been assessed against published background levels¹³ at the site to provide an *initial* assessment of the potential for surplus soil to be disposed of as cleanfill.
 - Recreational land use criteria used as acceptance criteria by Burwood Resource Recovery Park (managed fill) (BRRP). BRRP does not accept asbestos materials nor asbestos in soil.

4.4.2 Data assessment results

Laboratory data assessment summary tables are presented in Appendix E. In summary, the assessment of the results, including where applicable from previous T+T investigation works (refer Section 3.2) show:

- *Capping material* isolated exceedances of background concentrations of some metals and PAHs, and infrequent presence of ACMs and low levels of asbestos in soil (above "all site" uses acceptance criteria).
- Landfill materials:
 - Presence of ACMs and asbestos fibres as:
 - o Chrysotile, amosite and crocidolite fibres (white, brown and blue respectively).
 - o ACMs include insulation board, cement sheet and bitumastic materials.
 - o Above commercial land use criterion of ACM (up to 3.437 % weight/weight recorded in BH108 at 2.35 m bgl).
 - Above "all site" uses criterion of AF+FA (up to 6.737 % weight/weight recorded in BH108 at 2.35 m bgl).
 - Almost ubiquitous above background concentrations of metals, locally above background levels for PAHs and for the sum of DDT.
 - At a limited number of locations within the mass of landfill materials, above recreational and construction worker criteria for lead and PAHs (expressed as benzo (a) pyrene toxic equivalent).
 - Soil contamination has been identified in landfill materials throughout the vertical and lateral extent of the landfill mass. As uncontrolled fill, the distribution of contamination is essentially random.

¹² MfE - A Guide to the Management of Cleanfills (Section 4) – (2002).

¹³ ECan GIS - Trace level 2 - <u>https://mapviewer.canterburymaps.govt.nz/</u>.

- Natural materials the two samples of this stratum that were tested did not record above background levels of metals or PAHs. However, concentrations of TPHs in this material from BH112 at 9.2 m bgl (and coincident with high field screening values) exceeds the construction worker criterion. The chromatograph for this material indicates the TPHs are likely to be a diesel product.
- The contamination of the capping and landfill materials is, based on T+T's experience of investigating other similar sites in New Zealand, generally consistent with that which would be expected for an uncontrolled file site.

4.5 Revised conceptual site model

The preliminary conceptual site model (Section 3.4) has been revised based on the sampling/logging and laboratory testing, and the assessment of the results. The revised model is presented in Table 5.1 below.

Source	Pathway	Receptor				
Capping and landfill materials (contaminated soils – asbestos, lead, PAHs and TPH), all confirmed at concentrations above the relevant assessment	Direct contact, material ingestion, dust inhalation.	Potentially complete – construction and maintenance workers undertaking ground disturbance activities unless procedures adopted.				
criteria. Materials not suitable for disposal as cleanfill.		Centre users and staff – pathway potentially complete if contaminated materials reused where direct access is possible.				
		Potentially complete for materials disposed offsite to an inappropriate facility and affects to groundwater, workers at the receiving site and public near that site.				
	Environmental discharges – odours, dust, sediment, stormwater.	Potentially complete if construction works are not managed so that these materials are retained within the works area.				
Landfill gases (e.g. methane, carbon dioxide), organic vapours from fuels. Presence, extent, magnitude not	Inhalation during construction.	Potentially complete for construction and maintenance workers undertaking ground disturbance activities.				
yet known, though presence of landfill gas considered likely.		Centre users and staff – pathway complete unless construction includes suitable landfill gas protection and management measures.				

Table 4.2 – Conceptual site model

Intrusion through foundations, floor slabs and accumulation in buildings.	CCC asset – damage to building (e.g. from explosion) - pathway complete unless centres design includes suitable landfill gas protection and management measures.
---	---

The conceptual site model indicates there are potentially complete source-pathway-receptor linkages for development of the Centre on site. The complete linkages can be managed, in part, by preparing and implementing controls contained in a ground contamination site management plan (GCSMP).

The potentially complete pollutant linkages identified are consistent with those that would be expected at a landfill that has received uncontrolled fill. The earthworks and building controls that would be required to manage exposure to ground contaminants at the site would be similar to those for other contaminated sites and other uncontrolled file sites.

5 Discussion

5.1 Development context

In addition to assessing the potential development implications of constructing the Centre at Kyle Park versus a minimally contaminated site, CCC also wishes to understand whether there are, from a contaminated land perspective, advantages for development in the eastern corner (i.e. the development area) compared to the rest of the site.

The geotechnical assessment of the site indicates that a foundation solution incorporating driven piles is likely to be suitable. This will require excavation for foundations (e.g. ground beams) and some spoil material may be generated during piling (e.g. pre-drilling through obstructions before pile driving). Additional excavation works may be required for the pool and some buried services connecting/servicing the Centre.

The ground investigation works reported in Section 4 have confirmed the capping and landfill materials underlying Kyle Park are significantly contaminated and any development (be it the development area or wider site) is likely to involve contamination-related costs that are greater than those for a relatively "clean" site. For Kyle Park, contamination issues are primarily driven by the presence of asbestos in soils. The most significant contamination-related development issues thus relate to earthworks in these contaminated materials and the controls required to manage the risks posed by the activity(s). Reducing the likely extent of ground disturbance logically reduces the potential for exposure to contamination-related hazards and reduces management related disposal and compliance costs.

Siting the Centre in the eastern corner of the site (i.e. development area), where current ground levels need significant filling to match adjacent ground levels, the earthworks volumes disturbing contaminated capping and landfill materials would be expected to be less than if development were undertaken elsewhere on the site (where a net cut into contaminated material would be expected). Consequently, the contamination-related implications likely be significantly less implications for developing in this area compared to elsewhere on the site. As detailed in Section 5.5, offsite disposal costs for contaminated materials are significant and there are expected to be financial advantages for the development location in this part of the park over elsewhere on the site.

The odorous nature of the landfill material could be a nuisance to neighbours and construction workers. Hence, similarly, limiting the potential disturbance of such material means reducing the potential management of such nuisance. This would suggest that the development area is preferable to elsewhere on the site.

Developing the centre at Kyle Park irrespective of its location on site, is not in T+T's opinion likely to present contamination-related issues that would be considered atypical of a closed uncontrolled fill site. Similar development has occurred on landfill sites in New Zealand and the earthworks and building controls that would be required to manage exposure to ground contaminants at the site would be similar to those for other contaminated sites and other uncontrolled file sites.

5.2 Contaminant distribution

The borehole logs indicate comparable thicknesses of capping and landfill materials across the site. Due to the uncontrolled way in which these materials were deposited, and subsequent regrading works, the distribution of contamination is effectively random. However, soil analytical results indicate that the nature and magnitude of contamination are also broadly similar across the site (i.e. there is no evidence to suggest that contaminant levels within the eastern corner are any higher or lower than elsewhere on the site).

5.3 Remediation or management for future use

Remediation or contamination management is required where contaminant concentrations exceed land use criteria. In the case of developing the centre at Kyle Park, these are commercial/industrial and/or recreational land uses. Remediation and management may include specific actions to reduce, remove or contain contaminants.

Contamination of capping and landfill materials above recreational land use criteria could present a risk to future park users if not properly managed. Capping and landfill materials excavated or brought to ground level through piling and pre-drilling through obstructions should be assumed to be contaminated with asbestos and other contaminants and should not be reused where future park users could have direct contact with them. If materials cannot be retained on site and properly encapsulated, they will need to be disposed offsite at a licensed facility.

Where contaminated materials are re-used on the site or left in situ, a long-term management plan will be required to provide procedures and controls to reduce potential exposure to ground contamination by future maintenance workers disturbing the materials and future site users.

5.4 Construction and maintenance worker health and safety

During the development of the Centre it is likely that construction workers will come into contact with the capping and landfill materials, which presents a human health hazard. The primary hazard is likely to be due to the disturbance of asbestos contaminated materials and the inhalation of asbestos fibres by workers.

Where future development (construction and/or future maintenance) activities will likely involve the disturbance of the capping and landfill materials the following health and safety implications/considerations will apply:

- Disturbance of the contaminated materials, based on the levels of asbestos and ACMs, will need to comply with the Asbestos Regulations¹⁴ as follows:
 - For disturbance of the capping materials, such work will be *asbestos related work* under the Asbestos Regulations. The controls of the GCSMP can include appropriate content to meet with the requirements of the Asbestos Regulations including air monitoring, decontamination of equipment, signage and delineation of working areas etc.
 Disturbance of these materials would not be notifiable to WorkSafe New Zealand under the Asbestos Regulations.
 - For the landfill materials, the disturbance will be *Class A asbestos works* under the Asbestos Regulations. The work would need to be undertaken by a Class A Licensed Asbestos Removalist following an asbestos removal control plan prepared by them. The works would be notifiable to WorkSafe New Zealand before commencement. This level of control will be applicable during any bulk earthworks with this strata (e.g. trenching for services) as well as pre-drilling for piles where obstructions are encountered.

Undertaking works under the Asbestos Regulations will have cost and time implications for ground disturbance work. The transition from capping to landfill materials is not necessarily visually obvious and implementing asbestos controls will require careful planning and execution. A cautionary approach may be required given the profile of the development within the community, and adoption of Class A controls may be warranted.

¹⁴ Health and Safety at Work (Asbestos) Regulations 2016.

5.5 Soil disturbance, reuse and offsite disposal

The following relates to the reuse of materials for the development of the Centre from a soil contamination perspective, and is based on the reported ground contamination conditions. Based on the materials encountered on site, for reuse:

- Capping material and landfill material these materials are not suitable for reuse unless they can be incorporated (encapsulated) into the development where they cannot be disturbed in the future and thus result in direct human contact. Disturbance/contact by future maintenance workers should be avoided, although controls can be communicated via a GCSMP to manage the associated hazards if limited future disturbance cannot be avoided. Retaining (encapsulating) these materials within the landfill mass may be acceptable to CCC and ECan and subject to possible resource consent conditions. Disturbance of the materials should be avoid as far as practicable to avoid odour nuisance.
- *Natural materials* although highly unlikely to be handled during the development (i.e. based on their considerable depth below the site), these materials are likely to be suitable for reuse.

Materials displaced and not retained on the site will likely require appropriate offsite disposal, such as:

- Capping and landfill material
 - Disposal to licensed landfill only.
 - The materials are unsuitable for disposal as cleanfill or to managed fill such as BRRP due to the presence of asbestos and/or metals and hydrocarbons as well as their odorous properties.
 - Based on the levels of asbestos in these materials, disposal offsite to Kate Valley Landfill is the only option available in the general Christchurch area (the levels of non-asbestos parameters precludes their disposal at Plantation Road in Hororata, which is a managed fill that uses residential land use assessment criteria for acceptance purposes).
 - Disposal at Kate Valley Landfill will be contingent on adequate laboratory testing of these materials to demonstrate they comply with this landfill's acceptance criteria, which are based on toxicity characteristic leaching procedure (TCLP) analysis.
 - The requirement for some degree of pre-treatment to stabilise mobile contaminants before being accepted for disposal at Kate Valley Landfill cannot be precluded at this stage.
 - Disposal of asbestos contaminated material costs in the order of \$300 tonne (excluding GST and any pre-treatment).
- *Natural materials* subject to more laboratory testing of these materials, disposal to cleanfill could be possible, although the limited testing to date of this material has reported levels of hydrocarbons that would preclude cleanfill disposal.

The proposed receiving facility (e.g. cleanfill) will require copies of the laboratory data and assessment included in this report for their consideration and approval prior to accepting any materials originating from the site during development of the Centre.

5.6 Consenting

A full ground contamination-related planning assessment should be completed for the development at Kyle Park; however, in principle the following resource consents are likely to be required:

- NES Soil for soil disturbance and possible offsite disposal of materials (if required).
- City Plan excavation and disturbance of hazardous materials.

- Land and Water Regional Plan:
 - Discharge of hazardous substances (e.g. encapsulating contaminated landfill materials onsite).
 - Discharge to air (e.g. dust, possibly landfill gases).
 - Construction phase stormwater management.
 - Operational phase stormwater management.
 - Disturbance of hazardous materials and discharge to groundwater.

The planning assessment may identify other consents that will be required.

The preparation of the GCSMP will be required for supporting consent application(s) to demonstrate to the regulatory authorities that the effects of the development can be managed and adequately controlled.

5.7 Further investigation

If construction of the Centre proceeds on the site then a detailed ground gas assessment is required to characterise the landfill gas regime and the potential implications to the development. Good practice requires landfill gas monitoring data is collected over a range of time and atmospheric conditions (in this case at least six months and ideally a year). This assessment will require the drilling of a number of suitable boreholes and installation with landfill gas monitoring standpipes and subsequent monitoring over a period of months. With the monitoring data and characterisation of the landfill gas regime, the assessment of suitable gas protection measures (if any) can be prepared for the Centre.

Further sampling and laboratory analysis of capping and landfill materials by TCLP should be undertaken to determine their suitability for disposal to Kate Valley Landfill.

To aid with selecting and specifying foundation materials (e.g. pile materials) further testing of landfill materials for selected parameters should be undertaken including pH, sulphate and chloride. This information can be used by geotechnical and structural engineers for selection of suitable pile material(s) to work in a landfill environment.

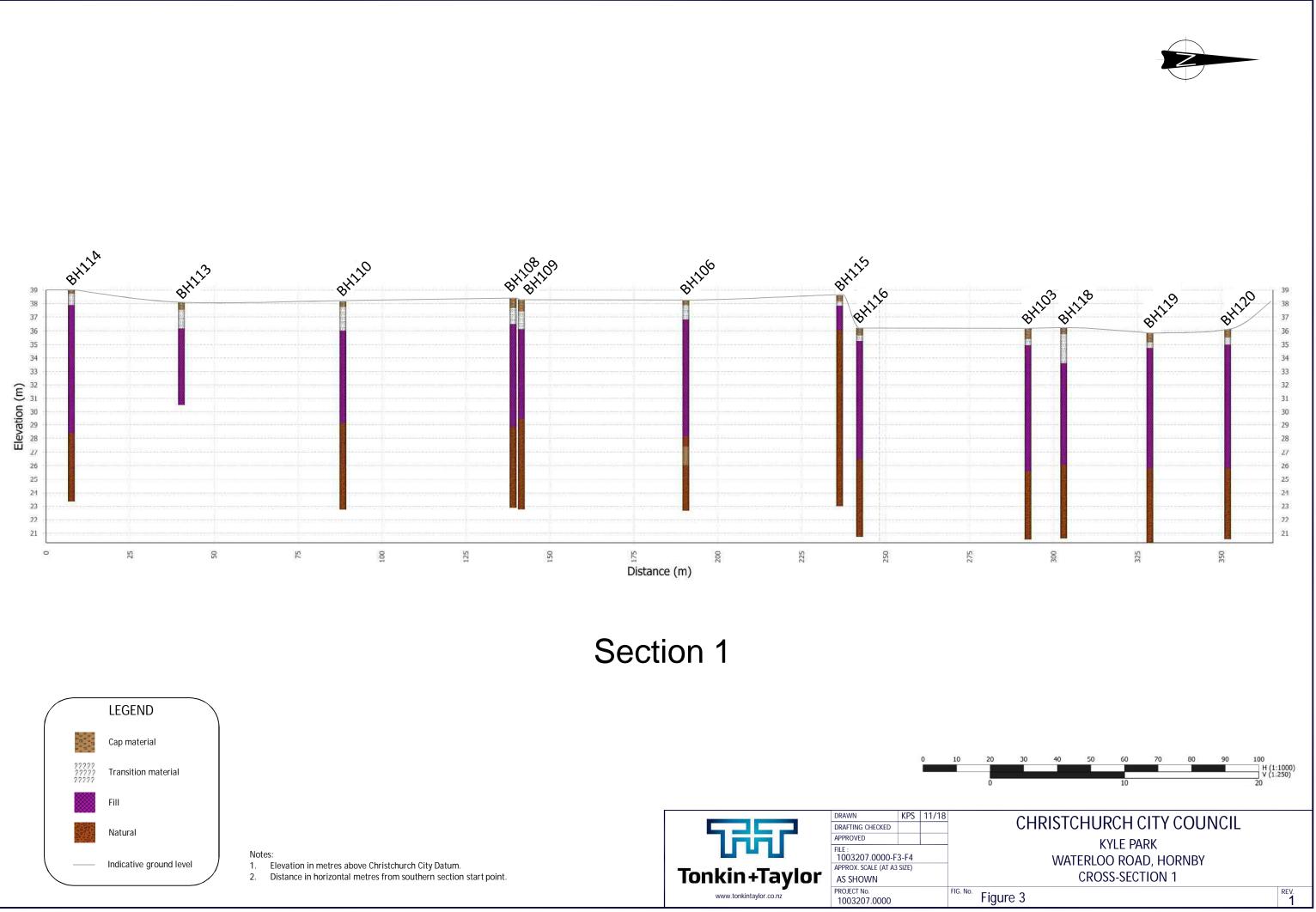
6 Conclusions

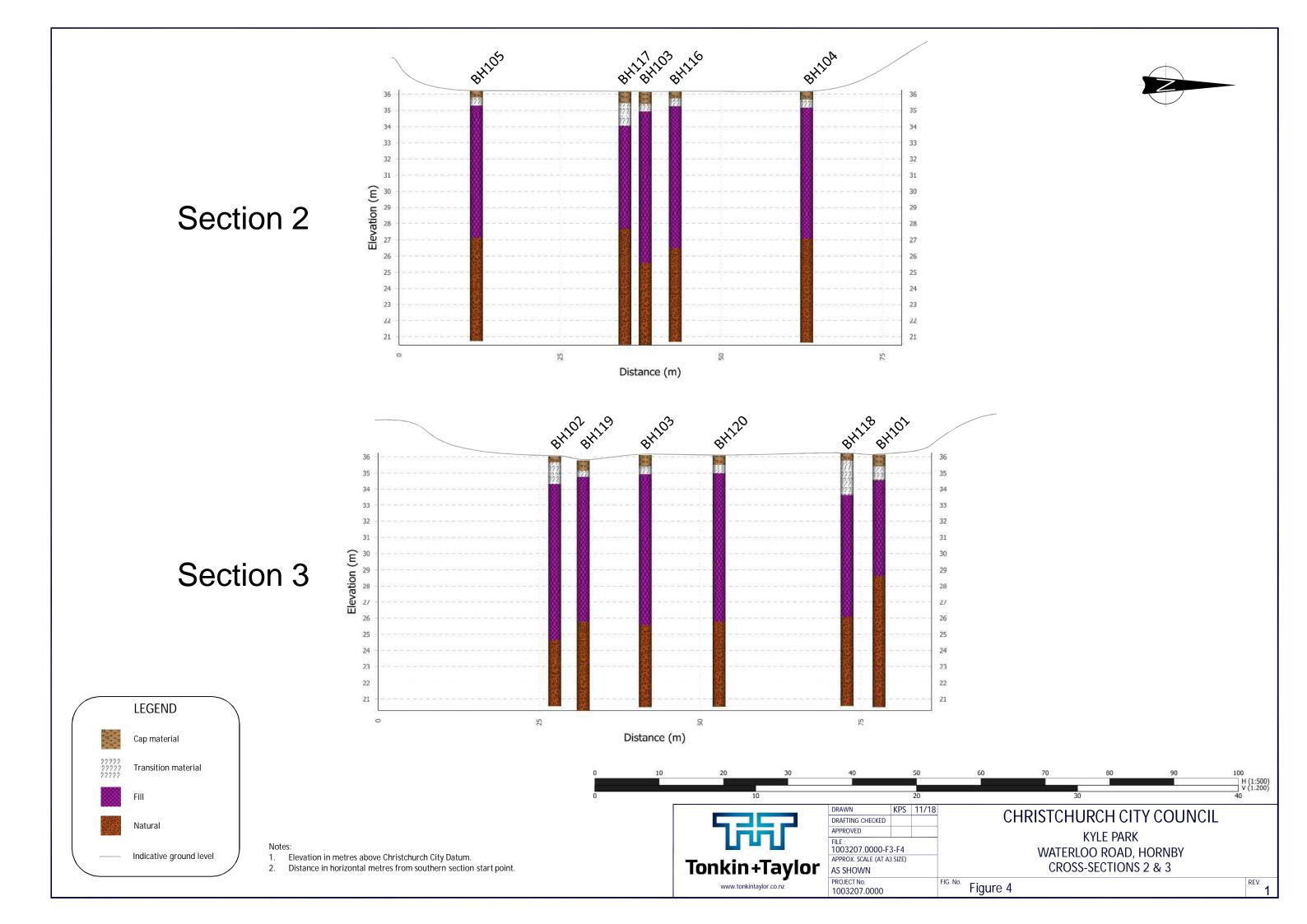
Kyle Park is a former gravel pit that was backfilled with uncontrolled landfill materials in the late 1960s and early 1970s. The investigation of the site in 2015 and 2018 confirms that the landfill materials are variable in composition and include a high proportion of organic material. During logging of the samples recovered from the boreholes, landfill materials exhibited organic odours. Laboratory testing of the capping and landfill materials has shown they can contain high levels of asbestos, metals and PAHs and will require controls during ground disturbance activities to protect construction workers and the environment. Options for the offsite disposal of capping and landfill materials are limited and subject to further testing. Presently only disposal to Kate Valley Landfill is suitable (subject to further testing), incurring higher cartage and disposal costs (approximately \$300 tonne excluding GST) compared to disposal to other managed fills and/or cleanfill.

The findings of this investigation indicate disturbance of the capping and landfill materials will need to be undertaken as asbestos related or Class A asbestos works under the Asbestos Regulations. Working under the requirements of the Asbestos Regulations will incur additional costs and will effect productivity of ground works.

The high proportion of organic material observed in the landfill materials during this investigation indicates there is a potential for landfill gas generation from this stratum. If development of the centre proceeds on the site, a landfill gas assessment programme should be commenced as early as possible to identify what landfill gas protection and management measures will be needed.

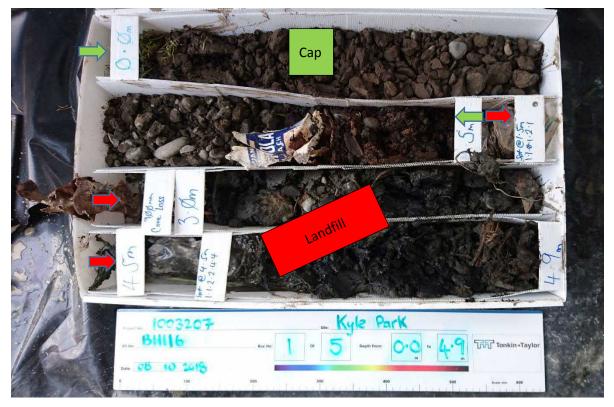
Trenching for services/utilities to the Centre across the site will disturb and displace capping and landfill materials. These will require either encapsulation within the development area or offsite disposal to a suitable landfill. Controls to manage contaminated land-related risks to construction workers, park users and the environment will need to be implemented during this work.


A planning assessment for development on the site for ground contamination-related resource consents will be required; it is likely a number of resource consents specific to the landfilling materials encountered on the site will be necessary. Preparation of a ground contamination site management plan will be needed to support consent application(s) to show that appropriate controls and procedures can be used during construction to appropriately manage risks to human health and the environment.


Locating the Centre on the development area within Kyle Park is considered a preferential option from a contaminated land perspective, compared to elsewhere on the site. Within the development area the future construction work is expected to involve less bulk earthworks disturbing the contaminated capping and landfill materials given that this area requires infilling over the top of the contaminated materials.

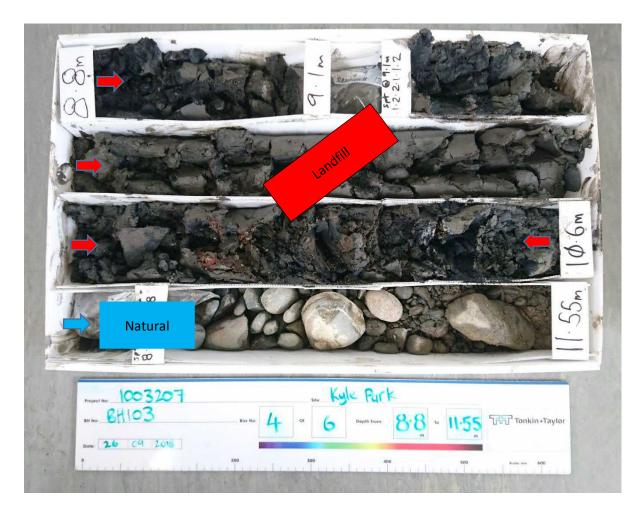

Developing the centre at Kyle Park irrespective of its location on site, is not in T+T's opinion likely to present contamination-related issues that would be considered atypical of a closed uncontrolled fill site. Similar development has occurred on landfill sites in New Zealand and the earthworks and building controls that would be required to manage exposure to ground contaminants at the site would be similar to those for other contaminated sites and other uncontrolled file sites.

- Figure 2 Site Plan
- Figure 3 Cross Section A-A'
- Figure 4 Cross Sections B-B' and C-C'
- CCC survey drawing reference RPS2301-01 (November 2018)



Photograph 1 –centre of the site looking south-west.

Photograph 2 – development area looking easterly (Waterloo Road left of frame).


Photograph 3 – example of capping materials and their transition into landfill materials.

Photograph 4 – examples of landfill materials.

Photograph 5 – example of asbestos containing material (cement board materials) (Borehole 111 at 0.7 m bgl).

Photograph 6 - example of landfill and natural material change.

Appendix C: Borehole Logs and Field Screening Data

BOREHOLE LOG

BOREHOLE No.: BH101

SHEET: 1 OF 1

PROJECT: Kyle CO-ORDINATES: (NZTM2000)	517 517									DRIL	L TYPI	E: MS HOD:	1000	.,		bad, Hornby JOB No.: 1003207.0000 HOLE STARTED: 20/09/2018 HOLE FINISHED: 20/09/2018
R.L.:	36.1															
DATUM: GEOLOGICAL	CCE	J								L FLUI	D: WA	IER	FI		LOGGED BY: KPS CHECKED: HJB ERING DESCRIPTION	
GENERIC NAME, ORIGIN, MATERIAL COMPOSITION.		25 50 FLUID LOSS (%) 75	WATER	CORE RECOVERY (%)	метнор	TESTS	SMAPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	10 25 50 100 (kPa) 200	1 5 20 20 50 8TRENGTH 50 60 60 60 8TRENGTH 250 250	20 60 DEFECT SPACING 200 (em) 2000 (em)	Description and Additional Observations
				66	PQ HFS			36			M M-W	F				Capping material: Sandy SILT with amorphous organics; dark brown. "Firm", moist, low plasticity, ve slow dilatancy. Contains trace rootlets; organic odour sand, fine to medium.
			-	73	PQ HFS P			35	2		W	-				Transition material: Sandy fine to coarse GRAVEL wi minor silt and trace cobbles; brown. Moist to wet, wel graded. Contains some coal (0.75 to 0.8m only); gravel, subangular to subrounded; sand, fine to medium. 1.0 to 1.5m - no recovery.
					۲ ۲			Ē								No SPT @ 1.5m (bouncing).
E8 9 9				100	SPT	7/8 6/3		33	3	\bigotimes		MD				Fill: organic and/or granular soils mixed with refuse. 2.6 to 3.0m - no recovery.
FILL			-	100	PQ HFS	2/1 N=12		32	4							
			-	100	SPT	2/1 4/4										For a general description of the landfill materials see the Geotechnical
ED. 989			-	100	PQ HFS	2/2 N=12		31	5							Assessment Report. Detailed field observations of the landfill material are available on request.
			-	100	SPT	1/3		- 30	6							
				100 1	PQ HFS S	2/2 3/3 N=10		29	7							
			-	100	SPT P	4/2 2/2 1/2			8			L				Silty sandy fine to coarse GRAVEL with trace cobble dark brownish grey. Loose, wet, well graded. Gravel, subangular to subrounded; sand, fine to coarse.
Ša				71	PQ HFS	N=7		28		0.0						8.1 to 8.3m - no recovery.
			-	100	SPT	13/13 10/12		27	9		M-W	VD				9.1m - grey; moist to wet, very dense.
Ē			20/09/2018 10.6 m bgl	100 1	PQ HFS S	10/12 16/12 for 65mm N>=50 Bouncing			10							
			▲ ^{20/}			7/5		26 			W-S	D				Sandy fine to coarse GRAVEL with minor silt and tra
NATURAL			-	100 100	PQ HFS SPT	6/6 14/18 N=34 Solid		25	11							cobbles; brown. Dense, wet to saturated, well grade Gravel, subangular to subrounded; sand, fine to coarse. 10.6 to 11.05m - no recovery from SPT; sample
			-			8/12		24	12			VD				obtained from overcore.
			-	100	SPT	16/18 16 for 55mm										12.2m - very dense. 12.2 to 12.56m - no recovery from SPT; sample obtained from overcore.
				100	PQ HFS	N>=50 Solid Bouncing		23	13							13.7 to 14.15m - no recovery from SPT; sample
				100	SPT	4/4 5/6 10/15		22	14							obtained from overcore.
				100	PQ HFS	N=36 Solid			15	0.00						
5				0	SPT	3/5 7/9		21		$\mathbf{\Sigma}$		D				15.2m - dense. 15.2 to 15.65m - no recovery from SPT.
						15/18 N=49 Solid		20	16							End of borehole at 15.65 m bgl (target depth).
COMMENTS: Hole Depth 15.65m								<u>F</u>		1						<u> </u>

BOREHOLE LOG

BOREHOLE No.: BH102

SHEET: 1 OF 1

EOLOGICAL ENGINEERING DESCRIPTION Automatication measurement m	(NZTM2000) R.L.:	15616 36.07n		, IIIE												HOLE FINISHED: 20/09/2018 DRILLED BY: ProDrill
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	DATUM: GEOLOGICAL									DRIL	L FLUI	ט. איא.		EI	NGIN	
Name Name <th< th=""><th>GEOLOGICAL UNIT,</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	GEOLOGICAL UNIT,															
NATURAL B </th <th>GENERIC NAME, ORIGIN, MATERIAL COMPOSITION.</th> <th></th> <th></th> <th>(9</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>HERING</th> <th></th> <th>ENGTH</th> <th>SSIVE</th> <th>- SPACING</th> <th></th>	GENERIC NAME, ORIGIN, MATERIAL COMPOSITION.			(9							HERING		ENGTH	SSIVE	- SPACING	
Bit International State Bit Internation Bit Internatinternation Bit Internatinternation <th></th> <th>(%) SSC (%)</th> <th></th> <th>OVERY (%</th> <th></th> <th>TESTS</th> <th></th> <th></th> <th></th> <th>8</th> <th>WEATI</th> <th>DENSITY</th> <th>EAR STR (kPa)</th> <th>OMPRES STRENC (MPa</th> <th>DEFECT</th> <th>Additional Observations</th>		(%) SSC (%)		OVERY (%		TESTS				8	WEATI	DENSITY	EAR STR (kPa)	OMPRES STRENC (MPa	DEFECT	Additional Observations
B B B B B B B B Capture metricities SLT with some same organics: Evone 16 dark borwn. Soft . plasticity, very slow diffattenee. Contains minor coal: creation organics: Evone 16 dark borwn. Soft . plasticity, very slow diffattenee. Contains minor coal: creation coal:		FLUID LG	ATER	DRE RECO	SING		MPLES	Ē	(m) HTH	APHIC L	DISTURE	RENGTH				
FILL 		888	2 3	ŏ	5 5		S/		ä	×			-0058	- 0.028	88800	Capping material: SILT with some sand, amo
FILL 0					ST			-	-		M-W					plasticity, very slow dilatancy. Contains trace
FILL 2/1 2/1 2/1 2/2 8 2/1 2/1 2/2 8 2/1 2/2 2/2 8 2/1 2/2 2/2 8 2/1 2/2 2/2 8 2/1 2/2 8 2/1 8				Ø	g			35	1 -	\bigotimes		F-St				
FILL 9 15 2/1 9 2/1 9 10 10 10 11 10 11				_	_	2/1			-	\bowtie						with some silt, brown to dark brown. "Loose",
FILL Image: State of the second sec				10	Ъ	2/1			2 -	\bigotimes						subangular to subrounded; sand, fine to coar
FILL Q 44 177 N=55 43 3 3 3 3 3 3 3 3 1.0 m - "firm to stiff", trace glass. 1.2 to 1.5m - no recovery. 1.5 to 1.55m - no recovery. No SPT @ 4.5m (wood). FILL 0 10				4	HFS			- 34	_	\bigvee						firm", moist to wet, low plasticity, very slow di
FILL 8 5 6 7 12 <th12< th=""> 12 <th12< th=""> 12</th12<></th12<>					g			-								
FILL a b a a				100	SPT	6/5		- 33	3	\otimes						
FILL 9 2/1 3/1 5 9 9 2/1 3/1 5 9 9 6 7 9 9 6 7 9 9 7 5.9 to 6.1m - no recovery. No SPT @ 4.5m (wood). 5.9 to 6.1m - no recovery. 7.2 to 7.6m - no recovery. 11/1 9 9 11/1 9 11/1 11/1 11/1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>1.5 to 1.95m - no recovery from SPT; sample</td>									-		1					1.5 to 1.95m - no recovery from SPT; sample
FILL 9 9 1 5 1 1 1 1 1 1 1 1				6	РQН			32	4	X						1.5m - gravelly, trace cobble.
FILL 3.55 to 4.5m - no recovery. No SPT @ 4.5m (wood). 9 11/1 11/1 11/1 11/1 11/1 11/1 11/1 11/	3			+	\neg			-		\bigotimes						Fill: organic and/or granular soils mixed with 2.1 to 3.0m - no recovery.
FILL 9 4 2/1 30 6 5.9 to 6.1m - no recovery. 11/1 11/1 11/1 29 7 7.2 to 7.6m - no recovery. 10 11/1 11/1 28 8 7.2 to 7.6m - no recovery. 10 11/1 11/1 28 8 7.2 to 7.6m - no recovery. 11/1 11/1 28 8 7.6 to 8.05m - no recovery from SPT; s from overcore. 11/1 11/1 27 9 7 7.6 to 8.05m - no recovery. 11/1 11/1 27 9 7 7.6 to 8.05m - no recovery. 11/1 11/1 11/1 28 8 7 11/1 11/1 27 9 7 10.1 to 10.4m - no recovery. 11/1 11/1 11/1 26 10 10.1 to 10.4m - no recovery. 10.1 to 10.4m - no recovery. 10.1 to 10.4m - no recovery. 10.1 to 10.4m - no recovery. 10.1 to 10.4m - no recovery. 11/1 11/1 24 12 12 12.2 to 12.35m - no recovery from SPT oblained from overcore. 12.7m 10 10 10 10 <td></td> <td></td> <td></td> <td></td> <td>FS</td> <td></td> <td></td> <td>31</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.55 to 4.5m - no recovery.</td>					FS			31	5							3.55 to 4.5m - no recovery.
NATURAL 9 0 0 1 </td <td></td> <td></td> <td></td> <td>26</td> <td>PQH</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>\otimes</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>No SPT @ 4.5m (wood).</td>				26	PQH			-	-	\otimes						No SPT @ 4.5m (wood).
NATURAL 9 11/1 1/1 1/1 1/1 1/1 N=4 29 7 7 7.2 to 7.6 m - no recovery. 1/1 1/1 1/1 1/1 N=4 28 8 29 7 7.6 to 8.05m - no recovery. 0 0 0 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 28 8 0 0 0/2 for 65mm N>=50 0/2 for 65mm N==50 0/2 for 65	FILL							- 30	6	\bigotimes						5.9 to 6.1m - no recovery.
NATURAL N=4 29 7				100	SPT	1/1				\bigotimes						
NATURAL 0 </td <td></td> <td></td> <td></td> <td></td> <td>FS</td> <td></td> <td></td> <td>-</td> <td>7 -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					FS			-	7 -							
NATURAL Image: second	₽ ? ?			é	g			- 29 	,	\bigotimes						7.2 to 7.6m - no recovery.
NATURAL NATURAL 0 0 0 1/1 1/1 0 23 13 0 0 0 10 </td <td><u>-</u></td> <td></td> <td></td> <td>9</td> <td>PT</td> <td></td> <td></td> <td>-</td> <td></td> <td>\bigotimes</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.6 to 8.05m - no recovery from SPT; sample</td>	<u>-</u>			9	PT			-		\bigotimes						7.6 to 8.05m - no recovery from SPT; sample
NATURAL 0 1/1 1/1 0/2 for 65mm N>=50 Build Building 1/1 1/1 0/2 for 65mm N>=50 Building 1/1 1/1 0/2 for 65mm N>=50 Building 1/1 1/1 0/2 for 65mm N>=50 Building 1/1 2/18 2/5 1/1 2/18 2/5 1/1 2/18 2/5 1/1 1/1 0/2 for 65mm N>=50 Building 1/1 1/10 2/5 1/1 0/2 for 65mm N>=50 Building 1/1 2/18 2/5 1/1 1/1 0/2 for 65mm N>=50 Building 1/1 2/18 2/5 1/1 1/1 0/2 for 65mm N>=50 Building 1/1 2/18 2/5 1/1 0/2 for 65mm N>=50 Building 1/1 2/18 2/5 1/1 0/2 for 65mm N>=50 Building 1/1 2/18 2/5 1/1 0/2 for 65mm N>=50 Building 1/1 2/5 1/1 0/2 for 65mm N>=50 Building 1/1 2/2 for 65mm N>=50 Building 1/1 2/2 for 65mm N>=50 Building 1/1 0/2 for 65mm N>=50 Building 1/1 2/3 1/1 0/2 for 65mm N>=50 Building 1/1 0/2 for 65mm N>=50 Building 1/1 0/2 for 65mm N>=50 Building 1/1 0/2 for 65mm N>=50 Soliding 1/1 0/2 for 65mm N 1/1 0/2 for 65mm N 1/1 0/2 for 65mm N						1/1		28	8 -	\bigotimes						trom overcore.
NATURAL 0 1/1 1/1 0/2 for 65mm N>=50 Build Building 1/1 1/1 0/2 for 65mm N>=50 Building 1/1 1/1 0/2 for 65mm N>=50 Building 1/1 1/1 0/2 for 65mm N>=50 Building 1/1 2/18 2/5 1/1 2/18 2/5 1/1 2/18 2/5 1/1 1/1 0/2 for 65mm N>=50 Building 1/1 1/10 2/5 1/1 0/2 for 65mm N>=50 Building 1/1 2/18 2/5 1/1 1/1 0/2 for 65mm N>=50 Building 1/1 2/18 2/5 1/1 1/1 0/2 for 65mm N>=50 Building 1/1 2/18 2/5 1/1 0/2 for 65mm N>=50 Building 1/1 2/18 2/5 1/1 0/2 for 65mm N>=50 Building 1/1 2/18 2/5 1/1 0/2 for 65mm N>=50 Building 1/1 2/5 1/1 0/2 for 65mm N>=50 Building 1/1 2/2 for 65mm N>=50 Building 1/1 2/2 for 65mm N>=50 Building 1/1 0/2 for 65mm N>=50 Building 1/1 2/3 1/1 0/2 for 65mm N>=50 Building 1/1 0/2 for 65mm N>=50 Building 1/1 0/2 for 65mm N>=50 Building 1/1 0/2 for 65mm N>=50 Soliding 1/1 0/2 for 65mm N 1/1 0/2 for 65mm N 1/1 0/2 for 65mm N				100	Å H			-		\boxtimes						For a general description of the lar
Pipe			-			1/1		- 27	9	\otimes						Assessment Report.
NATURAL 8/19 8/19 8/19 8/19 36/14 8/19 36/14 8/19 36/14 8/19 36/14 8/19 36/14 8/19 36/14 10.1 to 10.4m - no recovery.						0/2		-	-	\bigotimes						material are available on request.
NATURAL $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			18 gl	52	HFS			26	10	XX						
NATURAL $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			d m 0.1			7/10		-		\sim						10.1 to 10.4m - no recovery.
NATURAL			₹ 1	100	SPT	12/18		- 25	11 -	\bigotimes						
NATURAL 8/19 8/14 8/19 8/14 8/19 8/14 8/19 8/14 8/19 8/14 8/19 8/14 8/19 8/14 8/19 8/14 8/19 8/14 8/12 8/12 12/2 12 12 12 12 13 13 13 10 10 10 10 10 10 10 10 10 10				0	ЧŁS	for 65mm N>=50		_ 20	-	X	w	VD				Sandy fine to coarse CDAV/EL with miner all
NATURAL				10	PQ	bounding			10							cobbles; brownish grey. Very dense, wet, we
NATURAL	2			1	5	for 75mm	\models	24	12							
NATURAL 8/19 8/19 36/14 12.7m - brown; wet to saturated.					FS	Solid		-	-	8.00 8.00 6.00	w-s					12 2 to 12 35m - no recovery from SPT: com
NATURAL 8/19 8/19 36/14 12.7m - brown; wet to saturated.				100	PQH	Countrilly		23	13							obtained from overcore.
	NATURAL							L E								
for 20mm 22 14 2 of obtained from overcore.						for 20mm		22	14							13.7 to 13.95m - no recovery from SPT; sam obtained from overcore.
	5			100	AFS	Solid			-							
					¥	19/31		21	15							
o 版 for 75mm N>=50 15.2 to 15.5m - no recovery from SPT.				0	SPT	for 75mm N>=50				\bowtie						-
									16 -							End of borehole at 15.5 m bgl (target depth).
								- 20 -								

BOREHOLE LOG

BOREHOLE No.: BH103

SHEET: 1 OF 1

CO-ORDINATES:	51791									DRILI	TYPE	E: MS	1000			HOLE STARTED: 21/09/2018
(NZTM2000) R.L.:	15616)0 m	ιE						DRILI	MET	HOD:	SNC			HOLE FINISHED: 21/09/2018 DRILLED BY: ProDrill
DATUM:	36.14r CCD	11								DRILI	_ FLUI	D: WA	TER			LOGGED BY: KPS CHECKED: HJB
GEOLOGICAL														E	NGINE	ERING DESCRIPTION
GEOLOGICAL UNIT,																
GENERIC NAME, ORIGIN,											RING		IGTH	8	DEFECT SPACING (cm)	Description and
MATERIAL COMPOSITION.	9 (%) 9 (%)		RY (%)			TESTS					WEATHERING	NSITY N	SHEAR STRENGTH (KPa)	COMPRESSIVI STRENGTH (MPa)	(cm	Additional Observations
	(%) SSOT (%)	~	CORE RECOVERY (%)	8	0		ES		(E)	GRAPHIC LOG	MOISTURE	STRENGTH/DENSIT CLASSIFICATION	SHEA	000	ö	
	2 88	WATER	CORE	METHOD	CASING		SAMPLES	RL (m)	DEPTH (m)	GRAPI	MOIST		300 222 ⁽		200 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
								30		\otimes	М	s				Capping material: SILT with some sand, amorphous organics; brown to dark brown. "Soft", moist, low to
			93	PQ HFS				Ē		\otimes						moderate plasticity, very slow dilatancy. Contains tra-
			0,	g				35	1 -	\otimes		L				rootlets; organic odour; sand, fine to medium. Transition material: Sandy fine to coarse GRAVEL wi
										\boxtimes						some silt, amorphous organics; dark brown. Loose,
			100	SPT		2/1 1/1		Ē		\otimes						moist, well graded; low to moderate plasticity, no dilatancy. Organic odour; gravel, subangular to
				ι. Υ]	1/1 N=4		34	2 -	XX	W-S					subrounded; sand, fine to medium.
F			71	PQ HFS				E		\otimes						Fill: organic and/or granular soils mixed with refuse. 1.4 to 1.5m - no recovery.
								Ē	3 -	\bowtie						2.0m - wet to saturated.
- Xog			100	SPT		2/1 0/1		- 33	2	\otimes						2.7 to 3.0m - no recovery.
				S		2/1 N=4		E		\otimes						
			100	PQ HFS				32	4 -	\otimes						
				-				ŧ		\times						
								Ē	-	$ \times $						No SPT @ 4.5m (steel). 4.5 to 5.2m - no recovery.
FILL			56	PQ HFS				31	5 -	\sim						
				Pa				E		\bigotimes						
5 6								É ac	6	\otimes						For a general description of the landfill
EG. 9 6 7 7 8			100	SPT		13/2 2/1		- 30		\otimes						materials see the Geotechnical Assessment Report.
					1	1/1 N=5		Ē		\otimes						Detailed field observations of the landfill
			100	PQ HFS				29	7 -	\otimes						material are available on request.
								Ē		\otimes						
=			100	SPT		2/2 1/1		Ē	Q -	\otimes						
0				s]	1/1 N=4		28	U	\otimes						
2 Y Y Y			100	PQ HFS				F		\otimes						
						4.16		27	9 -	\otimes						
			100	SPT		1/2 2/1		E 2'		\otimes						
				ŝ		1/2 for 65mm		Ē		\bigotimes						
		21/09/2018 10 9 m hol	100	PQ HFS		N>=50		26	10 -	\otimes						
		21/05	e.0			8/10		Ē		X		D				Sandy fine to coarse GRAVEL with minor cobbles an
		▼	82	SPT		12/8 8/8		Ē	11 -	<u> </u>		-				trace silt; brownish grey. Dense, wet to saturated, we
E 0				S		N=28		25								graded. Gravel, subangular to subrounded; sand, fine to coarse.
_			100	PQ HFS				Ē								
						8/9		24	12 -							
			33	SPT		125/10 18/10		E		$\dot{o}^{0}_{,\dot{o}}$	S	VD				12.2m - cobbles absent; brown. Very dense, saturate 12.2 to 12.65m - no recovery from SPT; sample
NATURAL				ŝ		for 70mm N>=50		È	13 -	0.00						obtained from overcore.
NATURAL			100	PQ HFS		Bouncing		23	10	စံုံရံ						13.7 to 14.15m - no recovery from SPT; sample
						7/13 14/12		É								obtained from overcore.
			55	SPT		14/12 14/10 for 70mm		- 22	14 -	ð.°ð						
				FS		N>=50 Solid		Ē		o.o°d						
E			100	PQ HFS		Bouncing		Ē	-	0.00 0.00						
						6/11 15/15		21	15 -	k°.7						15.2 to 15.63m - no recovery from SPT
× 0 1			0	SPT		10/10 for 50mm		<u> </u>						<u></u>		15.2 to 15.63m - no recovery from SPT.
						N>=50 Solid		É ac	16 -							End of borehole at 15.63 m bgl (target depth).
						Bouncing		20								
COMMENTS:																

BOREHOLE No.: BH104

PROJECT: Kyle														, wa	10110		Dad, Hornby JOB No.: 1003207.0000
CO-ORDINATES: (NZTM2000)	51792 15615										L TYP						HOLE STARTED: 26/09/2018 HOLE FINISHED: 26/09/2018
R.L.:	36.17	m								DRIL	L MET	HOD:	SNC				DRILLED BY: ProDrill
DATUM:	CCD									DRIL	L FLUI	D: WA	TER				LOGGED BY: KPS CHECKED: HJB
GEOLOGICAL															ΕN	GINE	ERING DESCRIPTION
GEOLOGICAL UNIT, GENERIC NAME,																ß	
ORIGIN, MATERIAL COMPOSITION.											WEATHERING		ENGTH	SIVE		DEFECT SPACING (cm)	Description and
	(%) 55		VERY (%			TESTS				0		ION ION	SHEAR STRENGTH (KPa)	COMPRESSIV	(MPa	DEFECT (c	Additional Observations
	22 HIDLOSS (%)		CORE RECOVERY (%)	METHOD	SN		SAMPLES	Ê	DEPTH (m)	GRAPHIC LOG	MOISTURE	STRENGTH/DENSIT CLASSIFICATION	SHE	0			
	88	WATED	N NOO	MET	CASING		SAM	RL (m)	DEP		NON M	S STR	865833 965833		250	2000 1 2000 1 2000 2000	
				0				- 36		\otimes							Capping material: SILT with some sand and trace gravel, amorphous organics; brown to dark brown.
			08 0	2 HFS				E		\mathbb{X}							"Soft", moist, low plasticity, very slow dilatancy. Contains trace rootlets; organic odour; sand, fine to
				, a				35	1	***							medium; gravel, fine to medium, subangular to subrounded.
			-		-	2/0		Ē		***							Transition material: SILT with some sand and trace
			44	F F		0/1 1/1	_	Ę	2	\boxtimes	M-W						gravel; brown mottled greyish brown. "Soft", moist, plasticity, very slow dilatancy. Contains trace red
5			-	HFS		N=3		- 34	-	\otimes	IVI-VV						plastic; sand, fine to medium; gravel, fine to mediur
			61	, la				Ę		\mathbb{N}	1						subangular to subrounded. 0.6 to 0.9m - no recovery.
<u>8</u>			100	SPT	1	3/3		33	3	\mathbf{k}							Fill: organic and/or granular soils mixed with refuse
			7			2/2 1/2		Ē		\otimes							1.7 to 1.95m - no recovery.
			61	HFS		N=7		Ē	Λ.	\otimes							2.1m - moist to wet. 2.6 to 3.0m - no recovery.
				, a				32	4	\otimes							
FILL			100	SPT	1	1/3 10/40		F		\otimes							
_				0		for 70mm N>=50		- 31	5	\mathbf{x}							4.8 to 5.0m - no recovery.
m0.9-01			88	PQ HFS		Bouncing		Ē		\otimes							
Box 2, 30-5,01				۱A				Ē	_	\otimes							For a general description of the landfill materials see the Geotechnical
—					1			- 30	6	\otimes							Assessment Report.
				S S				Ē									Detailed field observations of the landfil material are available on request.
			100	PQ HFS				Ē	7	\otimes							
								29		\otimes							
			c	sPT '	1	2/1 0/0		Ē		\sim	1						7.6 to 8.05m - no recovery in SPT.
			\vdash			1/2 N=3		28	8	\mathbf{k}							
Ę			47	PQ HFS		C-11		Ē									8.55 to 9.1m - no recovery.
26-0-0-2								Ē	9								0.00 to 9. mi - no recovery.
ю́хоод			100	SPT		3/2 3/4		- 27	-	فكأذ	w-s	MD					Sandy fine to coarse GRAVEL with minor cobbles a trace silt; bluish grey. Medium dense, wet to satural
		26/09/2018	bg u		1	5/5 N=17		Ē		ခိုင်							well graded. Gravel, subangular to subrounded; sai
		26/0	10.4	PQ HFS		Solid		26	10	÷.	s	L					fine to coarse. 9.1 to 9.55m - no recovery from SPT; sample obtain
			Ľ			2/1		Ē		åQ 0.00							from overcore.
			44	SPT 1		2/2 2/2		Ē	11]						10.0m - reddish brown; saturated, loose. 10.8 to 11.05m - no recovery.
				ι. Υ		N=8		25		¢;oo							
-			100	PQ HFS				É									12.0m - trace to minor silt, trace cobbles; brownish grey.
						9/12		24	12	¢,°°							
			100	SPT		10/10 12/6		E		$\dot{o}^{0}_{0}\dot{o}$		D					12.2m - dense.
<u> </u>				ŝ		N=38		Ę	13	0.00							12.7m - sandy, trace to minor silt; brown.
			100	PQ HFS				23	15	ۇ ⁰ ،							
			-			7/13 19/11		Ē		0. 3.8°	1	VD					12 Zma supervision a
			100	SPT		19/11 10/10 N>=50		22	14								13.7m - very dense.
				HFS		11/-50											
.7-15.6m			100	PQ H		9/17		Ē		òòò							
-7.21,65					-	21/23 6		21	15	₽.°°	1						15.2 to 15.1m - no recovery from SPT.
8			+	- is	\square	for 70mm N>=50		Ē		\downarrow							End of borehole @ 15.51m bgl (target depth).
						Solid Bouncing		É	16	-							
								20		-							
COMMENTS:																	
ole Depth 15.51m																	

BOREHOLE No.: BH105

CO-ORDINATES: (NZTM2000) R.L.: DATUM:	Park 51791 15615 36.34i CCD	61.0								DRIL	L MET	e: MS Hod: D: WA	SNC			HOLE STARTED: 26/09/2018 HOLE FINISHED: 26/09/2018 DRILLED BY: ProDrill LOGGED BY: KPS CHECKED: HJB
								1						E		
GENERIC NAME. ORIGIN, MATERIAL COMPOSITION.	28 FLUID LOSS (%)	75 VATER	CORE RECOVERY (%)	МЕТНОD	CASING	TESTS	SMIPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIF/CATION	10 26 50 SHEAR STRENGTH 100 (kPa) 200	1 5 20 20 5 20 50 50 60 60 700 8 77RENGTH 250 250	20 60 80 80 80 800 800 800 800	Description and Additional Observations
			93	PQ HFS				36	1		М	L				Capping material: SILT with some sand and trace gravel, amorphous organics; brown to dark brown. "Soft", moist, low plasticity, very slow dilatancy. Contains trace rootlets; organic odour; sand, fine to medium; gravel, fine to medium, subangular to subrounded.
			100	SPT		2/1 0/0				\otimes						0.35m - yellowish brown. Transition material: sandy fine to coarse GRAVEL w
			100	PQ HFS		1/0 N=1		34	2	\bigotimes						minor to some silt, amorphous organics; dark brown "Loose", moist, well graded. Contains trace glass, white paint/plaster chips; organic odour; gravel, subangular to subrounded; sand, fine to medium.
<u> </u>			100	SPT		1/1 3/2		- 33	3	\otimes						Fill: organic and/or granular soils mixed with refuse.
			100	PQ HFS		2/2 N=9			4							1.4 to 1.5m - no recovery.
FILL			100	SPT		3/3 2/2		32		\otimes						For a general description of the landfill materials see the Geotechnical
			100	PQ HFS		2/2 for 70mm N>=50		31	5	\bigotimes						Assessment Report. Detailed field observations of the landfill material are available on request.
-			100	SPT		1/2 2/2		30	6	\bigotimes						
			100	ι. Ω		1/2 N=7		- 29	7		w					6.5m - wet.
			100	SPT		4/4 3/7			0	\otimes						
			100	PQ HFS		3/1 N=14		28	0	\bigotimes						
		018	100	SPT		3/4 4/16		- 27	9 -		W-S	VD				Sandy fine to coarse GRAVEL with minor silt and tr cobbles; brown. Very dense, wet to saturated, well
		26/09/2018	100	PQ HFS		20/10 for 10mm N>=50 Bouncing		26	10		S	-				graded. Gravel, subangular to subrounded; sand, fi to coarse. 9.7m - greyish brown; saturated.
			100	PQ HFS		20/30 for 70mm N>=50 Solid _{Bouncing}		25	11							10.6 to 11.05m - no recovery from SPT; sample obtained from overcore. 10.8m - trace silt; bluish grey.
NATURAL			100	SPT		12/19 25/25		- 24	12	0.0 00 0.0						12.0m - brownish grey. 12.2m - trace to minor silt; brown.
			100	PQ HFS		for 70mm N>=50 Solid Bouncing			13							12.2 to 12.35m - no recovery from SPT; sample obtained from overcore.
			100			11/17 18/18 14 for 60mm		23	14							13.7 to 14.06m - no recovery from SPT; sample obtained from overcore.
			100	PQ HFS		N>=50 Solid Bouncing 13/21		22	15 ⁻							
			0	SPT		27/23 for 65mm N>=50 Solid Bouncing		21	16							15.2 to 15.49m - no recovery from SPT. End of borehole @15.49m bgl (target depth).

BOREHOLE No.: BH106

CO-ORDINATES:	5179										DRIL	L TYPI	E: MS	1000			HOLE STARTED: 27/09/2018
(NZTM2000) R.L.:	156 ⁻ 38.2) mE	Ξ						DRIL	L MET	HOD:	SNC			HOLE FINISHED: 27/09/2018 DRILLED BY: ProDrill
R.L.: DATUM:	38.2 CCE										DRIL	L FLUI	D: WA	TER			LOGGED BY: KPS CHECKED: HJB
GEOLOGICAL															E١	NGINE	EERING DESCRIPTION
GEOLOGICAL UNIT,																	
GENERIC NAME, ORIGIN, MATERIAL COMPOSITION.		(%)		(%) ۲۶			TESTS					WEATHERING	N N	SHEAR STRENGTH (KPa)	COMPRESSIVE STRENGTH (MPa)	DEFECT SPACING (am)	Description and Additional Observations
		50 FLUID LOSS (%)	WATER	CORE RECOVERY (%)	METHOD	CASING		SAMPLES	RL (m)	DEPTH (m)	SRAPHIC LOG		STRENGTH/DENSITY CLASSIFICATION	10 255 SHEAF 500 200			
			-			-			38		\bigotimes	м	S				Capping material: SILT with some sand and trace gravel, amorphous organics; brown to dark brown. "Soft", moist, low plasticity, very slow dilatancy.
				100	PQ HFS				37	1 -							Contains trace rootlets; organic odour; sand, fine to medium; gravel, fine to medium, subangular to subrounded.
E 92				100	SPT		3/2 2/2 2/2			2 -							Transition material: SILT with some sand and trace gravel; brown. "Soft", moist, low plasticity, very slow dilatancy. Contains trace brick; sand, fine to medium
Box 1, 0.0-2.5m				71	PQ HFS		N=8		36	2	\bigotimes						gravel, fine to medium, subangular to subrounded.
				100	SPT F		2/1 3/2		35	3 -	\bigotimes						Fill: organic and/or granular soils mixed with refuse. 2.7 to 3.0m - no recovery.
				76	PQ HFS		2/2 N=9			4 -	\bigotimes						
				100	SPT P		1/2 2/1		34		\bigotimes						For a general description of the landfill materials see the Geotechnical Assessment Report.
				100	PQ HFS		0/1 N=4		33	5 -							Detailed field observations of the landfill material are available on request.
				100	SPT		2/4 4/4 6/4		32	6 -	\bigotimes						
E. Ŷ				100	PQ HFS		0/4 N=18		31	7 -							
196X 54 94 94 94 94 94 94 94 94 94 94 94 94 94			2	100	SPT		2/2 6/4 3/3		- 30	8 -	\bigotimes						
			4 2 / 109/2014 9.2 m bgl 9.2 m bgl	100	PQ HFS		N=16			0 -	\bigotimes						
			V	100	SPT		9/9 11/7 5/5		29	9	\bigotimes						
Ex.				80	PQ HFS		N=28		28	10 -	***	s	L				9.9 to 10.1m - no recovery. Fine to coarse GRAVEL with trace sand and silt;
- 0.5 4. 20 - 0.5				100	SPT		10/6 3/3 2/2 N=10			11 -							brownish grey. Loose, saturated, well graded. Grave subangular to subrounded; sand, fine to coarse. 10.3m - sandy.
				4	PQ HFS				27								Silty fine to medium SAND; grey. Loose, saturated, poorly graded.
				100	SPT		12/12 15/20 15 for 20mm		26	12 -	å.º.ċ		VD				11.1 to 12.2m - no recovery. Sandy fine to coarse GRAVEL with trace cobbles an silt; brownish grey. Very dense, saturated, well grade
NATURAL				100	PQ HFS		N>=50 Bouncing		25	13 -							Gravel, subangular to subrounded; sand, fine to coarse. 12.2 to 12.52m - no recovery from SPT; sample
E / 4				100	SPT		4/5 8/12 12/12 N=44			14 -			D				obtained from overcore. 13.2m - minor silt; brown. 13.7m - dense.
m/xF-801 cc xool				100	PQ HFS		Solid 6/8		24								13.7 to 14.15m - no recovery from SPT; sample obtained from overcore.
- 14-7				0	SPT		15/15 18/2 for 5mm N>=50		23	15 -	×		VD				15.2m - very dense. 15.2 to 15.58m - no recovery from SPT.
							Solid Bouncing		22	16 -	-						End of borehole @ 15.58m bgl (target depth).
COMMENTS:									r			I	I				1

BOREHOLE No.: BH107

	38.61n CCD		CORE RECOVERY (%)	METHOD	TESTS						HOD: D: WA				DRILLED BY: ProDrill LOGGED BY: KPS CHECKED: HJB
GECOLOGICAL UNIT, GENERIC NAME, ORIGIN, MATERIAL COMPOSITION		WATER		ЕТНОР	TESTS						D. W/		ENC		LOGGED DT. KF3 CHECKED. HJD
GEOLOGICAL LINIT, GENERIC NAME, ORIGIN, MATERIAL COMPOSITION.	(%) sson ann 2 182	WATER		ЕТНОD	TESTS						_		ENG	SINE	ERING DESCRIPTION
FILL	1382	WAT		5	CASING	e MIDI EC	e fe	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	SHEAR STRENGTH (KPa)	COMPRESSIVE STRENGTH (MPa)	DEFECT SPACING (cm)	Description and Additional Observations
<u>s</u> FILL			100	PQ HFS ME	85	WS	(iii) 121 111111 111111 111111	1 -	CITY OF A	M W W	S L	26 56 100 100 100	20 10 10 10 10 10 10 10 10 10 1	2000	Capping material: SILT with some sand and trace gravel, amorphous organics; brown to dark brown. "Soft", moist, low plasticity, very slow dilatancy. Contains trace rootlets; organic odour; sand, fine to medium; gravel, fine to medium, subangular to subrounded.
<u>§</u> FILL			100	SPT	2/3 3/2		37		\otimes						Transition material: SILT with some sand and trace gravel, amorphous organics; brown to dark brown
			06	PQ HFS	2/1 N=8		36	2 -							mottled light grey and orange. "Soft", moist, low plasticity, very slow dilatancy. Contains trace brick; organic odour; sand, fine to medium; gravel, fine to medium, subangular to subrounded.
			100	SPT	3/3 2/2			3 -	Ŵ						0.65m - organic sandy fine to coarse GRAVEL with minor to some silt; brown to dark brown. "Loose", w
			85	PQ HFS	1/2 N=7		35	4 -							well graded. Contains trace brick; organic odour; gravel, angular to subrounded; sand, fine to coarse organics, amorphous. 0.9m - trace white paint/plaster chips. 1.05m - light grey and orange bands.
							34	_	\otimes						Fill: organic and/or granular soils mixed with refuse
			75	PQ HFS			-	5		М	VD				2.9 to 3.0m - no recovery. 4.35 to 4.5m - no recovery. No SPT at 4.5m (wood).
			100	SPT	15/15 12/12		- 33	6							Sandy fine to coarse GRAVEL with minor to some and amorphous organics; dark brownish grey. Ver dense, moist, well graded. Gravel, subangular to subrounded; sand, fine to coarse.
			100	PQ HFS	14/12 N>=50 Bouncing		- 32	7 -	0.00 0.00 0.00	w	-				5.2m - trace silt, organics absent; grey. 5.3m - minor cobbles. 5.7 to 6.1m - no recovery.
			66	SPT F	14/16 16/14		31								 7.0m - trace cobbles; grey, wet. 7.6 to 7.85m - no recovery from SPT; 200mm same
			100	PQ HFS	12/8 for 70mm N>=50 Solid		30	8 -							obtained from overcore. 7.85 to 8.0m - sand and silt absent.
		27/09/2018 10.1 m bgl	2	SPT	16/18 18/18 14			9 -							9.1 to 9.47m - no recovery from SPT; 170mm sam obtained from overcore.
NATURAL		▲ ^{27/0}	100	PQ HFS	for 65mm N>=50 Solid Bouncing		29	10 -							9.3m - minor silt. For a general description of the landfill
-			100	PQ HFS	24/26 for 75mm N>=50 Solid Bouncing		28	11 -							materials see the Geotechnical Assessment Report. Detailed field observations of the landfill material are available on request.
			100	HFS	30/20 for 70mm N>=50 Solid Bouncing		26	12 - 13 -							12.2 to 12.35m - no recovery from SPT; sample obtained from overcore.
			100	SPT PQ	10/10 14/12 14/10		25	14	0.00						13.7m - brown.
-			100 1	PQ HFS S	for 70mm N>=50 Solid Bouncing		24	14	0.0.0 0.0.0						13.7 to 14.15m - no recovery from SPT; sample obtained from overcore.
			0	SPT	18/27 32/18 for 40mm			15 -	°. C						15.2 to 15.47m - no recovery from SPT.
					N>=50 Solid Bouncing		23	16 -							End of borehole @ 15.47m bgl (target depth).

BOREHOLE No.: BH108

CO-ORDINATES:	517911														
(NZTM2000)	156148								DRIL	LIYP	E: MS	1000			HOLE STARTED: 02/10/2018 HOLE FINISHED: 02/10/2018
R.L.:	38.43m								DRIL	L MET	HOD:	SNC			DRILLED BY: ProDrill
DATUM:	CCD								DRIL	L FLU	ID: WA	TER			LOGGED BY: KPS CHECKED: HJB
GEOLOGICAL													E١	IGINE	ERING DESCRIPTION
GEOLOGICAL UNIT,															
GENERIC NAME, ORIGIN,										ERING		NGTH	Э.H.	DEFECT SPACING (cm)	Description and
MATERIAL COMPOSITION.	S (%)		ERY (%)		TESTS					WEATHERING	NSITY	SHEAR STRENGTH (KPa)	COMPRESSIN STRENGTH (MPa)	EFECT S	Additional Observations
	28 80 75 75 75	~	CORE RECOVERY (%)	9	o		ES	Ē	GRAPHIC LOG	MOISTURE	STRENGTH/DENSITY CLASSIFICATION	SHEA	δ. S	ä	
	288 788	WATER	CORE	METHOD	CASING		SAMPLES RL (m)	DEPTH (m)	GRAPI	MOIST		10 25 20 20 20 20 20	- 1 5 - 20 - 20 - 100 - 250	88888	
							Ē			м	s				Capping material: SILT with some sand and trace gravel, amorphous organics; brown to dark brown.
			100	PQ HFS			- 3	5							"Soft", moist, low plasticity, very slow dilatancy. Contains trace rootlets; organic odour; sand, fine to
			-	g			Ē	1							medium; gravel, fine to medium, subangular to
			,	ž	0/40	L	3	7							subrounded. 0.3m - brown mottled light yellowish brown.
					8/42 for 50r	nm	Ē		\otimes						Transition material: SILT with some sand and trace
			100	PQ HFS	N>=5 Bouncir		Ē	2							gravel; brown mottled light yellowish brown. "Soft", moist, low plasticity, very slow dilatancy. Contains
<u>i</u>			-	g			- 3	j.	XX	W-S					trace brick, white paint chips, and timber; sand, fine medium; gravel, fine to medium, subangular to
			0	$\left \right $	2/3			3	\rightarrow						subrounded.
			100	SPT	3/3		3	5	\otimes						Fill: organic and/or granular soils mixed with refuse 2.4m - wet to saturated.
			100	S L L	N=9		È		\otimes						2.7111 - WEL IO SALUIALEU.
			10	PQ HFS			Ē	4	\otimes						For a general description of the landfill
			100	SPT	2/1		- 3	4						$\begin{array}{c} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$	materials see the Geotechnical
FILL			1	S	0/1 1/2			5							Assessment Report.
			82	PQ HFS	N=4		- 3	3							Detailed field observations of the landfill material are available on request.
			8	ğ			Ē		\otimes						
			100	SPT	1/1			6							5.9 to 6.1m - no recovery.
<u>i</u>			10	ŝ	3/5 9/3		3	2							
			14	PQ HFS	N=2)	Ē	7		1					6.7 to 7.6m - no recovery (rubbish blocking barrel). No SPT @ 7.6m.
			-	g			- 3	1							
							Ē		∞	Ì					
				FS			Ē	8		4					
			73	PQ HFS			- 3	D	\rightarrow						
							Ē	9]					8.7 to 9.1m - no recovery.
-			100	SPT	8/10 6/5		- 2	9	\otimes						
2)18)gl		ទួ	5/5 N=2	· [Ē		Š.	\$	VD				Sandy fine to coarse GRAVEL with minor cobbles a
3		02/10/2018 10.7 m bgl	100	PQ HFS			Ē	10	Å.						silt; brownish grey mottled orange. Very dense, we saturated, well graded. Gravel, subangular to
		▲ 10			13/1	3	2	В							subrounded; sand, fine to coarse. 9.7m - reddish orange.
			100	SPT	20/2: 8	2	-	11							9.8m - bluish grey.
			0	FS F	for 5m N>=5	0	- 2	7	a di ci						11.0m - grey.
			100	PQ HFS	Bouncir	g	Ē		စ္ႏိ						
			0	+	10/2			12	- Yo	ł					
NATURAL			100	8	26/14 for 5m	m	- 2	6	á chác chiến thể chiến thế chiến thể					$\begin{array}{c} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$	12.2 to 12.43m - no recovery from SPT; sample obtained from overcore.
			100	PQ HFS	N>=5 Solic Bouncir	ı	Ē	13	စ္ႏိ						12.7m - trace silt; bluish grey.
-			1	g	Dounda	9	- 2		ģ						
			0	F	4/6 9/7			-	0. گل						13.7 to 14.15m - no recovery from SPT; sample
			100	SPT	11/1 N=4			14	La c						obtained from overcore.
_			100	LES	Solid		2	4	<u>نې</u>						14.0m - brown. 15.2 to 15.57m - no recovery from SPT.
			10	PQ HFS	5/7		È	15							
			0	SPT	14/1 20 for 65r		2		၀.၀ိ ကို နဲ့						
<u>i</u>				S	N>=5 Solid	0	E 2	ر	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						End of borehole @ 15.57m bgl (target depth).
					Bouncir		Ē	16	-						
							2	2	-						
COMMENTS:															

BOREHOLE No.: BH109

CO-ORDINATES: (NZTM2000) R.L.: DATUM:	5179 ² 15614 38.31 CCD	456.0							DRIL	L TYPE L MET L FLUI	HOD:	SNC			HOLE STARTED: 28/09/2018 HOLE FINISHED: 28/09/2018 DRILLED BY: ProDrill LOGGED BY: KPS CHECKED: HJB
BEOLOGICAL													E١	IGINE	ERING DESCRIPTION
SEOLOGICAL UNIT, SERIERIC NAME, ORIGIN, MATERIAL COMPOSITION.	28 50 E LUD LOSA (#1)	76 - LOL COOL (77) WATER	CORE RECOVERY (%)	METHOD	TESTS	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	10 25 50 100 200 (KPa) 200	5 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50	20 60 200 200 200 200 (cm)	Description and Additional Observations
			100 100	SPT PQ HFS	5/4 3/4		38	1 -		W	S				Capping material: SILT with some sand and trace gravel, amorphous organics; brown to dark brown. "Soft", moist, low plasticity, very slow dilatancy. Contains trace rootlets; organic odour; sand, fine to medium; gravel, fine to medium, subangular to subrounded. 0.6m - orange and black mottles. 0.8m - wet.
			100	PQ HFS	3/1 N=11		36	2		M-W					Transition material: layered organic silty fine to medium SAND with minor gravel, and organic sandy SILT; dark grey. Wet; sharp organic odour.
			0 100	IFS SPT	2/4 3/9 38 for 70mm		- 35	3 -							Fill: organic and/or granular soils mixed with refuse. Moist to wet.
FILL			100 100	SPT PQ HFS	N>=50 Bouncing 2/4 4/2		34	4 -							For a general description of the landfill materials see the Geotechnical
			100	PQ HFS	2/4 N=12		33	5 -							Assessment Report. Detailed field observations of the landfill material are available on request.
			100	S SPT	1/0 1/1 1/1 N=4		32	6 -							
			100 100	SPT PQ HFS	0/0		31	7 -							
			100 1	PQ HFS S	1/0 1/1 N=3		∎ 	8 -							
		28/09/2018 10.3 m hdl	100	SPT	3/15 20/15 15 for 75mm		29	9 -		S	VD				Sandy fine to coarse GRAVEL with minor silt and amorphous organics; dark grey. Very dense, wet to saturated, well graded. Gravel, subangular to subrounded; sand, fine to coarse. 9.8m - organics absent; greyish brown.
		A 28/	100 100	SPT PQ HFS	N>=50 Bouncing 7/10 15/18		28	10		w					10.6m - grey; wet.
			100	PQ HFS	17 for 5mm N>=50 Solid Bouncing		27	11 -							10.6 to 10.91m - no recovery from SPT; sample obtained from overcore.
NATURAL			1164	SPT	6/12 15/22 13 for 10mm		26	12							12.2 to 12.51m - no recovery from SPT; sample obtained from overcore. 12.3m - greyish brown.
			100	r PQ HFS	N>=50 Solid Bouncing 4/4 6/9		25	13 -			D				
			71 100	AHFS SPT	13/18 N=46 Solid		24	14 -		S					13.7m - trace silt; reddish brown. Saturated, dense. 14.8m - minor silt.
			0	SPT PQ	5/9 13/17 20 for 65mm N>=50	_	23	15	X						14.9 to 15.2m - no recovery. 15.2m - very dense. 15.2 to 15.57m - no recovery from SPT.
OMMENTS:					Solid Bouncing		22	16 -							End of borehole @ 15.51m bgl (target depth).

BOREHOLE No.: BH110

CO-ORDINATES: (NZTM2000)	5179 1561												E: MS HOD:				HOLE STARTED: 01/10/2018 HOLE FINISHED: 01/10/2018
R.L.:	38.22																DRILLED BY: ProDrill
DATUM: GEOLOGICAL	CCD											- FLUI	D: WA	IER	EI		LOGGED BY: KPS CHECKED: HJB ERING DESCRIPTION
GENERIC NAME, ORIGIN, MATERIAL COMPOSITION.	13	50 FLUID LOSS (%)	WATER	CORE RECOVERY (%)	METHOD	CASING	TESTS	SMAPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	10 25 SHEAR STRENGTH 100 (kPa) 200	1 5 20 51 100 50 60 60 60 60 60 60 60 60 60 60 60 60 60	20 60 200 DEFECT SPACNG 200 (cm) 200	Description and Additional Observations
			-	100	PQ HFS				38			M	S				Capping material: SILT with some sand, amorphous organics; brown to dark brown. "Soft", moist, low plasticity, very slow dilatancy. Contains trace rootlet organic odour; sand, fine to medium.
									37	1	\otimes	W					0.4m - minor gravel; dry to moist, "firm to stiff". Grav fine to coarse, subangular to subrounded.
			-	100 100	PQ HFS SPT		2/5 9/7 7/6 N=29		36	2							Transition material: SILT with some sand, minor gravel, amorphous organics; brown to dark brown. "Firm to stiff", moist, low plasticity, very slow dilatan Contains trace brick and timber; organic odour; san fine to medium.
			-	100	SPT PQ		2/1 1/1		- 35	3							1.0m - interbedded silty fine to medium SAND with minor gravel, fine to medium SAND, and organic sandy SILT. Wet.
				100	PQ HFS		2/2 N=6		34	4							Fill: organic and/or granular soils mixed with refuse. Moist to wet.
FILL				0	SPT		2/1 0/1 2/3			5	\boxtimes						4.5 to 5.0m - no recovery from SPT; sample not recovered from overcore.
				100	PQ HFS		N=6		33	6	\bigotimes						For a general description of the landfill materials see the Geotechnical
-			-	0 100	IFS SPT		1/7 4/3 4/3 N=14		32	7							Assessment Report. Detailed field observations of the landfill material are available on request.
				100	F PQ HFS		4/2		31	1							
- 10° 0 0° 0° X00			-	100	S SPT		3/3 3/4 N=13		- 30	8	\bigotimes						7.6 to 8.05m - no recovery in SPT.
â 				100	PQ HFS					9 -	\mathbb{X}						8.55 to 9.1m - no recovery.
				100	SPT		3/5 4/5 7/19		- 29 -		0.000 2.000	S	D				Sandy fine to coarse GRAVEL with minor cobbles a trace silt; bluish grey. Dense, saturated, well grader Gravel, subangular to subrounded; sand, fine to
		0 000	m bgl	100	PQ HFS		N=50		28	10							coarse. 9.4 to 9.6m - wood pieces.
			11.1 m bgl	100 -	PQ HFS		35/15 or 60mm N>=50 Solid Bouncing		27	11			VD				9.6m - minor cobbles, trace silt. 10.6m - very dense. 10.6 to 10.74m - no recovery from SPT; sample obtained from overcore. 12.0m - minor silt, trace cobbles; greyish brown.
NATURAL				100	SPT		20/37 50		26	12							12.2 to 12.41m - no recovery from SPT; sample
11. °C 11. °C 10.				100	PQ HFS		or 55mm N>=50 Solid Bouncing		25	13	0.0 0.0 0.0 0.0 0.0						obtained from overcore. 12.6m - brown. 13.1m - orange-brown.
			-	100	SPT		15/25 20/22 8 or 40mm			14	0.0 0.8 0.0						13.7 to 14.04m - no recovery from SPT; sample obtained from overcore.
				100	PQ HFS		N>=50 Solid Bouncing 11/17		24	15							
				0	SPT		24/26 or 65mm N>=50		23		×						15.2 to 15.49m - no recovery from SPT. End of borehole @ 15.49m bgl (target depth).
							Solid Bouncing		22	16							of selections of the term of (target deput).
COMMENTS:	!								1		1						

BOREHOLE No.: BH111

PROJECT: Kyle														, Wate	rloo Re	oad, Hornby JOB No.: 1003207.0000
CO-ORDINATES: (NZTM2000)	5179 1561										L TYPI					HOLE STARTED: 04/10/2018 HOLE FINISHED: 04/10/2018
R.L.:	38.61	1m								DRIL	L MET	HOD:	SNC			DRILLED BY: ProDrill
DATUM:	CCD									DRIL	L FLUI	D: WA	TER			LOGGED BY: KPS CHECKED: HJB
GEOLOGICAL														E	NGINE	EERING DESCRIPTION
GEOLOGICAL UNIT, GENERIC NAME,															0	
ORIGIN, MATERIAL COMPOSITION.											MEATHERING		ENGTH	SNE	DEFECT SPACING (am)	Description and
	100	SS (%)		RECOVERY (%)		TESTS						ENSITY ION	SHEAR STRENGTH (KPa)	DOMPRESSIVI STRENGTH (MPa)	DEFECT	Additional Observations
		FLUID LOSS (%)	¥.	E RECO	D D		SAMPLES	Ê	DEPTH (m)	GRAPHIC LOG	MOISTURE	STRENGTH/DENSIT CLASSIFICATION	SHE	8.,		
	81	82	WAIER	CORE RE	CASING		SAME	RL (m)	DEPT	GRAF			866829 866829	20050-	88888	
								Ē		\otimes	м	S				Capping material: SILT with some sand, amorphous organics; brown to dark brown. "Soft", moist, low
				86 PO HES				38		\otimes						plasticity, very slow dilatancy. Contains trace rootlets organic odour; sand, fine to medium.
					-			Ē	1 -	\otimes	M-W					0.35m - trace gravel, fine to medium, subangular to
					_	1/1		37		\mathbb{X}						subrounded. Fill: organic and/or granular soils mixed with refuse.
			1	100 Tax	5	0/1 2/3		∎_ 0/	2 -	\otimes						1.0m - moist to wet.
5						N=6		Ē	2	\otimes						1.3 to 1.5m - no recovery.
				100 PO HES	3			36		\otimes						
			┝	+	\dashv			Ē	3 -	\otimes						No SPT @ 3.0m (core slipped out of barrel).
				y.				E ar		\otimes						
				83 PO HES	3			35		\otimes						
FILL					-			Ē	4 -	\bigotimes						4.25 to 4.5m - no recovery.
				700 SPT		1/2	-	34		∞						4.25 to 4.5m - no recovery.
=			-			1/2 3/5		∎ F	5	\otimes						For a general description of the longitil
				PO HES		N=11		Ē		\otimes						For a general description of the landfill materials see the Geotechnical
				- G	3			33		\otimes						Assessment Report.
				200 201	-	2/2		Ē	6 -	\otimes						Detailed field observations of the landfill material are available on request.
			-			2/6 5/3		32		\otimes						
				PO HES		N=16		Ē	7 -	\otimes						
					-			Ē		\otimes	W-S					7.4m - wet to saturated.
				100 S PT		4/3 4/6		31		\otimes						7.4m - Wel to Saturateu.
5						4/5 N=19			8 -	\otimes						
; ;				PO HES				30		88	1	VD				Sandy fine to coarse GRAVEL with trace to minor silt
<u></u>								Ē	9 -							and trace cobbles; yellowish brown. Very dense, wet to saturated, well graded. Gravel, subangular to
		8		5 10		11/20 50	F	È			1					subrounded; sand, fine to coarse.
		9/201	n bg			for 65mm N>=50		29								
I.		20/09/2018	10.4	PO HES	3	Bouncing		Ē	10	000						
			L			13/27		28			1					10 Cm
f Solo			╞	6 F		42/8 for 2mm		Ē	11 -							10.6m - greyish brown. 10.6 to 10.83m - no recovery from SPT; sample
				100 HES		N>=50 Solid		Ē								obtained from overcore.
				PO HES	3 -	Bouncing		- 27 E		$\hat{\mathbf{p}}_{\mathbf{p}}$						
NATURAL						7/7		Ē	12 -		1					
				100 SPT	5	8/12 15/15		26								12.2 to 12.65m - no recovery from SPT; sample obtained from overcore.
						N>=50 Solid		Ē	13 -							
				PO HES	3			Ę	-	\hat{o}, \hat{o}						
<u> </u>			┝			6/6 8/5		25		R°,	1					13.7m - saturated, medium dense.
			-		5	3/3 N=19		Ē	14	\downarrow	L					13.7 to 14.15m - no recovery from SPT; sample not
				95 PO HES		Solid		24			s	MD				obtained.
				<u>م</u> ا	<u>×</u>	5/4 5/7		Ē	15 -							
					-	7/6 N=25		Ę	-	\sim	1					15.2 to 15.65m - no recovery from SPT; sample
			+		<u>י</u>	Solid		23								obtained from overcore.
								Ē	16 -	-						End of borehole @ 15.65m bgl (target depth).
COMMENTS:								F		-						

BOREHOLE No.: BH112

PROJECT: Kyle	517	017	3 00) m^	J						יווסח	TVD	N: Kyle E: MS	1000			HOLE STARTED: 04/10/2018
(NZTM2000)	156																HOLE FINISHED: 04/10/2018
R.L.:	38.4												HOD:				DRILLED BY: ProDrill
	CCI	5									DRILI	L FLUI	D: WA	TER			LOGGED BY: KPS CHECKED: HJB
		Г								_					El		ERING DESCRIPTION
GENERIC NAME, ORIGIN, MATERIAL COMPOSITION.		25 50 FLUID LOSS (%) 75	WATER	CORE RECOVERY (%)	метнор	CASING	TESTS	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	10 25 50 SHEAR STRENGTH 100 (kPa) 200	1 5 20 STRENGTH 50 (MPa) 250 (MPa)	20 60 200 DEFECT SPACING 200 (am) 200	Description and Additional Observations
			>	0	2	0		s	2	۵	Ŵ	М	s				Capping material: SILT with some sand and trace
		· · · · · ·		100	PQ HFS				38	1 -		D-M	L				gravel, amorphous organics; brown to dark brown. "Soft", moist, low plasticity, very slow dilatancy. Contains trace rootlets; organic odour; sand, fine to medium; gravel, fine to medium, subangular to subrounded.
			ľ	100	SPT		1/3 3/3		37		\bigotimes						Transition material: sandy fine to coarse GRAVEL v trace silt; brown. "Loose", dry, well graded. Gravel,
			-	100	PQ HFS		2/2 N=10		36	2 -							angular to subrounded; sand, fine to coarse. 0.6m - minor to some silt, trace wood fibres; moist. 0.95 to 1.05m - orange mottles. 1.5m - organic; dark brown to black. Organics
				53	PQ HFS				35	3 -							\amorphous and fibrous. Fill: organic and/or granular soils mixed with refuse No SPT @ 3.0m (wood).
FILL					PQ					4	\mathbf{N}						3.8 to 4.5m - no recovery.
			ł	100	SPT		1/1 1/1		34		\bigotimes						
				100	PQ HFS		1/1 N=4		33	5 -							For a general description of the landfill materials see the Geotechnical Assessment Report.
			ł	100	SPT		3/4 2/2		- 32	6	\otimes						Detailed field observations of the landfill material are available on request.
			ļ	100	PQ HFS		2/2 N=8		- 32	7 -							
				100	SPT		4/6 8/7		31		*						
				61	PQ HFS		6/5 N=26		30	8 -		W-S	VD				Sandy fine to coarse GRAVEL with minor cobbles a trace silt, amorphous organics; dark brownish grey.
			-	1	141		7/43 for 65mm N>=50	_	29	9 -	0.0.0	S					Very dense, wet to saturated, well graded. Gravel, subangular to subrounded; sand, fine to coarse. 8.6m - organics absent.
			10.8 m bgl	100	PQ HFS		Bouncing		- 28	10 -							 8.7 to 9.1m - no recovery. 9.2m - silty; golden brown staining, petrol odour. Si plastic.
			V	100	SPT		18/18 25/25 for 75mm		20	11 -							9.3m - trace silt. 9.6 to 9.8m - bluish grey; saturated. Strong petrol
NATURAL				100	PQ HFS		N>=50 Solid Bouncing		27		0.0.0.0 0.0.0 0.0.0						odour. 10.5m - bluish grey. 10.6 to 10.9m - no recovery from SPT; sample obtained from overcore. 10.8 to 11.2m - silty; golden brown staining, petrol
				100	SPT		7/10 18/12 14/6		26	12 -							odour. Silt is plastic. 11.0m - trace silt; bluish grey.
				100	PQ HFS		for 25mm N>=50 Solid Bouncing			13 -	0.000						12.2 to 12.6m - no recovery from SPT; sample obtained from overcore. 12.7m - brown.
				100	SPT P		10/17 15/10		25		0.00 0.00 0.00						13.7 to 14.08m - no recovery from SPT; sample
				100 1	PQ HFS s		20/5 for 5mm N>=50 Solid Bouncing		24	14 -	0.000						obtained from overcore.
				_	A	+	_ our rolling		23	15							SPT not recorded @ 15.2m. End of borehole @ 15.2m bgl (target depth).
										16 -							Line of potoniolo (gr 10.2111 byr (talyet ueptir).
OMMENTS:								1	- 22				I				

BOREHOLE No.: BH113

PROJECT: Kyle CO-ORDINATES:	517909	90 00) mN								-				Dad, Hornby JOB No.: 1003207.0000 HOLE STARTED: 02/10/2018
(NZTM2000)	156138														HOLE FINISHED: 02/10/2018
R.L.:	38.12m	ı								L MET					DRILLED BY: ProDrill
DATUM:	CCD								DRIL	L FLUI	D: WA	TER			LOGGED BY: KPS CHECKED: HJB
GEOLOGICAL													EI		ERING DESCRIPTION
GEOLOGICAL UNIT, GENERIC NAME,														DN N	
ORIGIN, MATERIAL COMPOSITION.			(%)							THERING	>	SHEAR STRENGTH (KPa)	SSIVE GTH (a)	DEFECT SPACING (cm)	Description and Additional Observations
	(%) SSO		OVERY (TESTS				90	, WEA	ATION	IEAR ST (kP.	COMPRESSIV STRENGTH (MPa)	DEFEC	
	28 50 FLUID LOSS (%) 75	WATER	CORE RECOVERY (%)	CASING		SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION				
	882	Ŵ	8 4	1 3		S.	ੇ - 	В	×××	¥8 M	S S	82829 82829	5 5 5 5 100 250	2000 20 20 20 2000 20 20 2000 20 20	Capping material: SILT with some sand and trace
			u u	, l				-	\otimes						gravel, amorphous organics; brown to dark brown. "Soft", moist, low plasticity, very slow dilatancy.
			100 PO HES	3				4 -	XX		F-St				Contains trace rootlets; organic odour; sand, fine to
							37	1	\otimes						medium; gravel, fine to medium, subangular to subrounded.
Ē			100 Tax	-	1/1 2/2			-	\otimes						0.2m - sandy; brown mottled yellowish brown. Transition material: Gravelly sandy SILT; brown. Mo
X 200					5/4 N=13		- 36	2 -	\bigotimes						low plasticity. Contains trace brick; gravel, fine to
× n			100 PO HES	Í			_		\otimes						coarse, subangular to subrounded; sand, fine to coarse.
								3 -	\otimes						0.8m - gravel absent; dark brown. "Firm to stiff". 1.2 to 1.4m - trace sand; grey mottled orange and d
		[100 SPT	5	1/1 1/1		- 35	3	\otimes						brown. Moderate plasticity, no dilatancy. 1.4m - trace gravel, medium to coarse, subangular t
FILL					1/1 N=4		-	-	\otimes						subrounded.
			100 PO HES	3			- 34	4 -	\otimes						Fill: organic and/or granular soils mixed with refuse.
			[_]	-					\otimes						
								5 -	\otimes						No SPT @ 4.5m (wood).
			50 PO HES				- 33	5	R7						5.1 to 6.1m - no recovery (timber blocked barrel).
_								-	X						
5 6 7					2/1		- 32	6 -	\sim	s					
			100 100	5	3/4 4/4				\bigotimes						6.1m - saturated.
E007			61 PO HES	2	N=15			7 -	\sim	w					6.55 to 6.95m - no recovery.
			61 PO H	Ž			- 31		\otimes	vv					6.95m - wet.
ă			-	+					\sim						End of borehole @7.6m bgl (refusal on steel).
							- 30	8 -	-						
							_								For a general description of the landfill
								9 -							materials see the Geotechnical
															Assessment Report. Detailed field observations of the landfill
							-	-	-						material are available on request.
							- 28	10 -							
							_								
							c=	11 -							
							-	-							
								12 -							
								-							
								13 -							
							- 25	-							
							- 24	14 -							
							-								
							- 23	15 -							
						I E		-							
							-								
							- 22	16 -							
COMMENTS:	111					F			1					mii	
lole Depth															

BOREHOLE No.: BH114

PROJECT: Kyle CO-ORDINATES: (NZTM2000)	51790 15613								DRIL	L TYPI	E: MS	1000			Dad, Hornby JOB No.: 1003207.0000 HOLE STARTED: 03/10/2018 HOLE FINISHED: 03/10/2018
R.L.:	39.00n	n							DRIL	L MET	HOD:	SNC			DRILLED BY: ProDrill
DATUM:	CCD								DRIL	L FLUI	D: WA	TER			LOGGED BY: KPS CHECKED: HJB
													EN	IGINE	
GERCEIDLAL UNIT, GERERIC NAME, ORIGIN, MATERIAL COMPOSITION.	SS FLUID LOSS (%)	WATER	CORE RECOVERY (%)	METHOD	TESTS		Sterrics RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE MEATHERING	STRENGTH/DENSITY CLASSIFICATION	10 25 50 100 200 (MPa) 200	1 5 20 20 87RENSTH 100 (MPa) 280	20 60 DEFECT SPACING 200 (cm) 2000	Description and Additional Observations
			86	PQ HFS			- 38	1		M-W	S				Capping material: SILT with some sand and trace gravel, amorphous organics; brown to dark brown. "Soft", moist, low plasticity, very slow dilatancy. Contains trace rootlets; organic odour; sand, fine to medium; gravel, fine to medium, subangular to
			100	SPT	3/3 3/2										subrounded. Transition material: gravelly SILT with some sand; brown. "Soft", moist, low plasticity, no dilatancy.
			100	PQ HFS	2/2 N=9		37	2							Contains trace timber, metal, brick, plastic, white paint/plaster chips.
					5/8		36	3							0.9 to 1.1m - no recovery. Fill: organic and/or granular soils mixed with refuse
			100	FS SPT	5/4 5/3 N=1										
			100	PQ HFS			35	4							For a general description of the landfill materials see the Geotechnical Assessment Report.
FILL			100	SPT SPT	32/3 3/4 4/2 N=1	-	34	5							Detailed field observations of the landfill material are available on request.
			100	PQ HFS											
			22	SPT	4/1 25/1 5/8	2	- 33	6	\bigotimes						6.1 to 6.55m - no recovery from SPT; 100mm obtai from overcore.
			80	PQ HFS	N>= Bound		32	7							
			100	SPT	3/4 4/4 5/5		31	8							7.4 to 7.6m - no recovery.
			100	PQ HFS	N=1	8	30	9							
		018 ogl	100	PQ HFS	10/4 for 75 N>=5 Bound	mm 50	29	10							 9.1 to 9.25m - no recovery from SPT; sample not obtained. 9.1 to 10.6m - drilling equipment damaged; retrieva equipment lost downhole may have resulted in mix core.
		 03/10/2018 11.1 m bgl 	100	SPT	12/1 14/2 10	6	28	11		W-S	VD				Sandy fine to coarse GRAVEL with trace silt; greyis brown. Very dense, wet to saturated, well graded.
			100	PQ HFS	for 30 N>= Soli Bound	mm 5 0 d									Gravel, subangular to subrounded; sand, fine to coarse. 10.6 to 10.93m - no recovery from SPT; sample obtained from overcore.
			100	SPT	9/10 10/1 11/1 N=4	0	- 27	12	0 (00 000		D				12.2m - dense. 12.2 to 12.65m - no recovery from SPT; sample
NATURAL			100	PQ HFS	N=4 Soli		26	13	0.00						obtained from overcore.
			100	SPT	7/5 4/5 5/4 N=1		25	14	0.0 0.0 0.0		MD				13.7m - medium dense. 13.7 to 14.15m - no recovery from SPT; sample
			100	PQ HFS	Soli 5/1:	2									obtained from overcore.
			0	SPT	19/ 8/9 N=4 Soli	1	24	15							15.2m - dense. 15.2 to 15.65m - no recovery from SPT.
							23	16							End of borehole @ 15.65m bgl (target depth).

BOREHOLE No.: BH115

CO-ORDINATES: (NZTM2000)	Park 51792 15615	25.0								L TYPE					HOLE STARTED: 05/10/2018 HOLE FINISHED: 05/10/2018
R.L.: DATUM:	38.66r CCD	m								L FLUI					DRILLED BY: ProDrill LOGGED BY: KPS CHECKED: HJB
GEOLOGICAL											D. 117		EN	NGINE	ERING DESCRIPTION
GEOLOGICAL UNIT, GENERIC NAME. ORIGIN, MATERIAL COMPOSITION.	20 FLUID LOSS (%)	75 V. WATER	CORE RECOVERY (%)	метнор	TESTS	SMIPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	SHEAR STRENGTH (KPa)	COMPRESSIVE STRENGTH (MPa)	DEFECT SPACING (cm)	Description and Additional Observations
FILL	83	52 · · · · · · · · · · · · · · · · · · ·	60	PQ HFS ME	8	8	- 38	1	20 20	M	S	10 25 100	1 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		Capping material: SILT with some sand, amorphous organics; brown to dark brown. "Soft", moist, low plasticity, very slow dilatancy. Contains trace rootlets organic odour; sand, fine to medium. 0.3m - trace gravel, fine to medium, subangular to subrounded. Transition material: SILT with some sand and trace
			76	PQ HFS			37	2 -		M-W W	MD				gravel, amorphous organics; dark brown mottled ligh brown and orange. "Soft", moist, low plasticity, very slow dilatancy. Contains trace rootlets; organic odou sand, fine to medium; gravel, medium to coarse, subangular to subrounded. 0.75m - some organics, spongy, brown.
		-	100	SPT	4/3 5/5		E	3 -	0,00						Fill: organic and/or granular soils mixed with refuse.
			100	PQ HFS	4/4 N=18		35	4 -	0.0.0						0.9 to 1.5m - no recovery. No SPT @ 1.5m (wood). 2.25 to 2.6m - no recovery.
			100	SPT	6/17 12/8 12/11		- 34	5 -	0.0.0.0 0.0.0.0		D				Sandy fine to coarse GRAVEL with trace to minor si and trace cobbles; grey. Medium dense, wet, well graded. Gravel, subangular to subrounded; sand, fir
			100	PQ HFS	N=43 Solid		33		00000						to coarse. 4.5m - dense. 4.5 to 4.95m - no recovery from SPT; sample obtain from overcore.
			100	SPT	14/14 14/16 20		- 32	6 -			VD				6.1m - very dense. 6.1 to 6.48m - no recovery from SPT; sample obtain from overcore.
			100 100	SPT PQ HFS	for 75mm N>=50 Solid Bouncing 12/14 18/18		- 31	7 -	0.0.0.0.0						7.6 to 7.97m - no recovery from SPT; sample obtain
		-	46	PQ HFS	14 for 70mm N>=50 Solid		30	8 -							from overcore. 8.5 to 9.1m - no recovery.
NATURAL			100 100	SPT	6/16 35/15 for 15mm N>=50		29	9 -	0.0.00						9.1m - greyish brown. 9.1 to 9.34m - no recovery from SPT; sample obtain from overcore.
		05/10/2018 11.1 m bgl		- PQ HFS	Solid Bouncing 8/8		28	10 -	0.0 0.0 0.0						
		▲ 11	_	FS SPT	10/10 11/13 N=44 Solid			11 -	0,		D				10.6m - dense. 10.6 to 11.05m - no recovery from SPT; sample obtained from overcore.
-			100	r PQ HFS	8/16 11/8		27	12 -	0.00	S					11.9m - brown.
			100	HFS SPT	8/10 N=37 Solid		26	13 -		5					12.2m - saturated. 12.2 to 12.65m - no recovery from SPT; sample obtained from overcore.
			0 61	PQ	5/6 5/8		25								13.3 to 13.7m - no recovery.
			0 100	IFS SPT	10/12 N=35 Solid			14 -	0.000						13.7 to 14.15m - no recovery from SPT; sample obtained from overcore.
			100	SPT PQ HFS	6/6 5/7 9/13		24	15 -	0:0 0:0 0:0						15.2 to 15.65m - no recovery from SPT.
			0	Я	N=34 Solid		- 23	16 -							End of borehole @ 15.65m bgl (target depth).

BOREHOLE No.: BH116

PROJECT: Kyle CO-ORDINATES: (NZTM2000) R.L.:	51791 15615 36.20r	54.0								DRIL DRIL	L TYPI L MET	E: MS HOD:	1000 SNC			Add, Hornby JOB No.: 1003207.0000 HOLE STARTED: 05/10/2018 HOLE FINISHED: 05/10/2018 DRILLED BY: ProDrill
DATUM: GEOLOGICAL	CCD									DRIL	L FLUI	D: WA	TER			LOGGED BY: KPS CHECKED: HJB ERING DESCRIPTION
									-	-						
GENERIC MAME, ORIGIN, MATERIAL COMPOSITION.	80 FLUID LOSS (%)	WATER	CORE RECOVERY (%)	метнор	CASING	TESTS	SMAPLES	KL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	10 25 50 100 200 (kPa) 200	1 5 20 20 50 817EENGTH 100 (MPa) 250 250	20 60 DEFECT SPACING 200 000 (cm) 2000	Description and Additional Observations
			76	PQ HFS				36	1		М	S				Capping material: SILT with some sand and trace gravel, amorphous organics; brown to dark brown. "Soft", moist, low plasticity, very slow dilatancy. Contains trace rootlets; organic odour; sand, fine to medium; gravel, fine to medium, subangular to subrounded.
			100	SPT		1/1 0/1					W-S					Transition material: SILT with some sand and minor gravel, amorphous organics; brown to dark brown.
			0	PQ HFS		2/1 N=4		34	2							"Soft", moist, low plasticity, very slow dilatancy. Contains trace concrete and bark; organic odour; sand, fine to medium; gravel, fine to medium, subangular to subrounded.
			30	PQ HFS				33	3							0.95 to 1.3m - no recovery. Fill: organic and/or granular soils mixed with refuse. Wet to saturated. 1.95 to 3.0m - no recovery. No SPT @ 3.0m (metal, core loss).
FILL			100	SPT		1/1 2/2			-							3.45 to 4.5m - no recovery.
			100	PQ HFS		4/4 N=12		31	5							For a general description of the landfill materials see the Geotechnical Assessment Report.
5			100	SPT		5/7 5/4 2/2		30	0	\otimes						Detailed field observations of the landfill material are available on request.
			100	PQ HFS		N=13		29	7							
			33	SPT		2/2 1/2 0/1		- 28	8	\otimes						7.6 to 7.9m - no recovery in SPT; 150mm obtained from overcore.
			100	- PQ HFS		N=4			9							
		18	100	SPT		2/0 1/2 12/35										
		05/10/2018 10.6 m bal		r PQ HFS		for 70mm N>=50 Bouncing 7/7		26	10		w s	D				Sandy fine to coarse GRAVEL with minor silt and the cobbles; bluish grey. Dense, wet, well graded. Graves subangular to subrounded; sand, fine to coarse. 10.4m - brownish grey.
			100	SPT		8/10 10/10 N=38		25	11	0.00						10.6m - trace silt; saturated, brown. 10.6 to 11.05m - no recovery from SPT; 50mm
			100	PQ HFS		Solid 9/12		24	12							obtained from overcore.
NATURAL			100	SPT		14/14 16/6 for 15mm		- 24 -				VD				12.2m - very dense. 12.2 to 12.59m - no recovery from SPT; sample obtained from overcore.
			100	PQ HFS		N>=50 Solid Bouncing 7/10		23	13							
			100	SPT		16/16 16/2 for 5mm		22	14							13.7 to 14.08m - no recovery from SPT; sample obtained from overcore.
			100	PQ HFS		N>=50 Solid Bouncing 19/20			15							
			0	SPT		25/25 for 75mm N>=50		21		\geq	1					15.2 to 15.5m - no recovery from SPT.
						N>=50 Solid Bouncing		20	16							End of borehole @ 15.50m bgl (target depth).
COMMENTS: Hole Depth 15.5m								20	10							

BOREHOLE No.: BH117

CO-ORDINATES: (NZTM2000)	5179 1561												E: Fra		1		HOLE STARTED: 06/10/2018 HOLE FINISHED: 06/10/2018
R.L.:	36.1												HOD:				DRILLED BY: ProDrill
DATUM: GEOLOGICAL	CCE)									DRILL	. FLUI	D: WA	TER			LOGGED BY: KPS CHECKED: HJB ERING DESCRIPTION
GENERIC NAME, ORIGIN, MATERIAL COMPOSITION.		80 FLUID LOSS (%)	WATER	CORE RECOVERY (%)	METHOD	CASING	TESTS	SMAPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	10 26 SHEAR STRENGTH 50 (kPa) 200	1 5 20 20 50 60 (MPa) 50 50 50 50 50 50 50 50 50 50 50 50 50	20 60 200 200 200 200 (cm)	Description and Additional Observations
			-	83	PQ HFS				36	1 -		M	S				Capping material: SILT with some sand and trace gravel, amorphous organics; brown to dark brown. "Soft", moist, low plasticity, very slow dilatancy. Contains trace rootlets; organic odour; sand, fine to medium; gravel, fine to medium, subangular to subrounded.
				0	SPT		0/0 0/0				$\overset{\infty}{\searrow}$						Transition material: gravelly SILT with some sand, amorphous organics; brown to dark brown. "Soft",
				80	PQ HFS		0/1 N=1		34	2 -	\bigotimes	M-W					moist, low plasticity, very slow dilatancy. Contains trace rootlets; organic odour; sand, fine to medium; gravel, fine to medium, subangular to subrounded.
			-	22	SPT		0/1 1/0		33	3 -	\bigotimes						0.75 to 1.0m - no recovery. 1.5 to 2.15m - no recovery.
			ļ	100	PQ HFS		1/5 N=7			4 -	\bigotimes						Fill: organic and/or granular soils mixed with refuse Moist to wet. 3.1 to 3.45m - no recovery.
FILL			-	44	SPT PC		4/2 2/1		32		\bigotimes						
				69	PQ HFS		1/2 N=6		31	5 -	\bigotimes						4.7 to 5.3m - no recovery. For a general description of the landfill
			-	100	SPT PQ		1/1		- 30	6 -	\bigotimes						materials see the Geotechnical Assessment Report.
			-	100	PQ HFS SI		1/1 1/2 N=5		-	7 -	\bigotimes						Detailed field observations of the landfill material are available on request.
			-	100	SPT PQ		3/4		29		\bigotimes						
			-	76 10	PQ HFS SI		3/3 2/2 N=10		28	8 -							8.05 to 8.3m - no recovery.
			-	100 7	spt PQ		8/10		- 27	9 -		W	VD				Sandy fine to coarse GRAVEL with trace to minor cobbles and silt; dark grey. Very dense, wet, well graded. Gravel, subangular to subrounded; sand, fi to coarse.
		c	•_	100	PQ HFS		14/21 15 for 50mm N>=50			10 -							8.8m - grey.
			11.0 m bgl	100	SPT PG		Bouncing 4/4 4/4		26			S	MD				10.6m - medium dense, saturated.
		-	▼_	100			3/5 N=16		- 25	11 -							11.0m - brown.
NATURAL					T PQ HFS		5/5 4/4		24	12 -							
		ļ		0 100	IFS SPT		6/7 N=21			13 -							
			-	0 100	T PQ HFS		6/6 7/7		23		0.0.0 0.0.0 0.0.0						
			-	100	HFS SPT		4/5 N=23		22	14 -							
			-	0 100	SPT PQ HFS		3/4 4/5 5/7		- 21	15 -	0.00 0.00 0.00 0.00						
				5	Ŗ		N=21			16 -	127						End of borehole @ 15.65m bgl (target depth).
COMMENTS:									20		1						

BOREHOLE No.: BH118

CO-ORDINATES: (NZTM2000)	5179 1561												E: Fras		1		HOLE STARTED: 06/10/2018 HOLE FINISHED: 06/10/2018
R.L.:	36.2												HOD:				DRILLED BY: ProDrill
DATUM: GEOLOGICAL	CCD)										_ FLUI	D: WA	TER			LOGGED BY: KPS CHECKED: HJB EERING DESCRIPTION
											+						
GENERIC NAME, ORIGIN, MATERIAL COMPOSITION.	*	50 FLUID LOSS (%)	WATER	CORE RECOVERY (%)	METHOD	CASING	TESTS	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	10 25 50 SHEAR STRENGTH 100 (kPa) 200	1 5 20 STRENGTH 50 STRENGTH 100 (MPa)	20 60 200 DEFECT SPACING 200 (cm) 200	Description and Additional Observations
			>	66	PQ HFS	0		0	36			M	s				Capping material: SILT with some sand and trace gravel, amorphous organics; brown to dark brown. "Soft", moist, low plasticity, very slow dilatancy. Contains trace rootlets; organic odour; sand, fine to
							0.40		35	1 -	\bigotimes						medium; gravel, fine to medium, subangular to subrounded. Transition material: gravelly SILT with some sand,
			-	1 100	HFS SPT		0/0 1/1 0/1 N=3		34	2 -	\bigotimes						amorphous organics; brown to dark brown. "Soft", moist, low plasticity, very slow dilatancy. Contains trace clinker; organic odour; sand, fine to medium;
			-	100 61	SPT PQ HFS		0/0		- 33	3 -	\bigotimes						gravel, fine to medium, subangular to subrounded. 0.9m - contains trace brick. 1.0 to 1.5m - no recovery.
				100 1	PQ HFS SI		0/0 2/2 N=4			4 -	\bigotimes						\2.0 to 2.4m - no recovery. Fill: organic and/or granular soils mixed with refuse.
				100	SPT PG		1/1 0/1		32		\bigotimes						For a general description of the landfill materials see the Geotechnical Assessment Report.
FILL				82	PQ HFS		0/0 N=1		31	5 -							Detailed field observations of the landfill material are available on request.
			-	100	SPT		1/1 1/0		30	6	\bigotimes						5.9 to 6.1m - no recovery.
-				100	PQ HFS		0/0 N=1		29	7 -	\bigotimes						
			-	100	SPT		2/2 1/2 3/4		- 28	8 -							
-				100	PQ HFS		N=10			9 -	\bigotimes						
				100	SPT SPT		2/3 3/2 3/3 N=11		27		\bigotimes						
			▲ 10.8 m bgl	100	r PQ HFS		14/12		26	10 -		w S	. D				Sandy fine to coarse GRAVEL with trace to minor s and trace cobbles; bluish grey. Dense, wet, well
-			•	100	FS SPT		10/10 10/12 N=42		25	11 -	0.00						graded. Gravel, subangular to subrounded; sand, fi to coarse. 10.3m - saturated.
				100	PQ HFS		7/10		24	12 -							11.0m - brown. 11.8m - minor sand, trace silt.
NATURAL			-	100	SPT		12/13 20/5 for 10mm N>=50			10			VD				12.2m - very dense.
			-	100	r PQ HFS		Bouncing 7/7 7/7		23	13 -			D				40.7m dana
-				100 100	PQ HFS SPT		8/8 N=30		22	14 -							13.7m - dense.
			-	0 10	SPT PQ F		6/6 8/9 8/10 N=35		21	15 -							
					0				20	16 -							End of borehole @ 15.65m bgl (target depth).
COMMENTS:									-		1					min	

BOREHOLE No.: BH119

CO-ORDINATES:	Park 517918								DRILI	L TYPI	E: MS	1000			HOLE STARTED: 06/10/2018
(NZTM2000)	156164) mE	Ξ					DRILI	L MET	HOD:	SNC			
R.L.: DATUM:	35.85m CCD	n							DRILI	L FLUI	D: WA	TER			DRILLED BY: ProDrill LOGGED BY: KPS CHECKED: HJB
GEOLOGICAL													E۱	NGINE	ERING DESCRIPTION
GEOLOGICAL UNIT, GENERIC NAME, ORIGIN, MATERIAL COMPOSITION.	88 FLUID LOSS (%)	WATER	CORE RECOVERY (%)	метнор	TESTS	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE WEATHERING	STRENGTH/DENSITY CLASSIFICATION	10 25 50 SHEAR STRENGTH 100 (kPa) 200	1 5 20 50 50 50 50 50 50 50 50 50 50 50 50 50	20 60 200 DEFECT SPACING 200 (cm) 2000	Description and Additional Observations
	NIDE		100 0	PQ HFS		0				M	S				Capping material: SILT with some sand and trace gravel, amorphous organics; brown to dark brown. "Soft", moist, low plasticity, very slow dilatancy.
					3/2		35	1 -	\bigotimes						Contains trace rootlets; organic odour; sand, fine to medium; gravel, fine to medium, subangular to subrounded. Transition material: SILT with some sand and mino
			100 100	PQ HFS SPT	1/0 1/1 N=3		- 34 	2 -							gravel, amorphous organics; brown to dark brown mottled yellowish brown. "Soft", moist, low plasticit; very slow dilatancy. Contains trace brick; organic odour; sand, fine to medium; gravel, fine to medium
-			100	SPT PC	2/11 8/6 2/2		33	3 -							subangular to subrounded. Fill: organic and/or granular soils mixed with refuse
			99	PQ HFS	N=18		32	4 -	\bigotimes						3.45 to 3.8m - no recovery.
FILL			0	S SPT	1/1 0/1 1/2 N=4		31	5 -	\bigotimes						4.5 to 5.0m - no recovery.
			0 100	T PQ HFS	1/1		30	6 -							For a general description of the landfill materials see the Geotechnical
-			100 100	PQ HFS SPT	2/2 3/8 N=15		29	7 -	\bigotimes						Assessment Report. Detailed field observations of the landfil material are available on request.
			100	SPT PG	3/1 2/2 3/3		- 28	8 -	\bigotimes						
			100	PQ HFS	N=10		27	0 -	\bigotimes						
			100	S SPT	5/4 5/7 5/5 N=22		- 26	9							
		06/10/2018 11.3 m bgl	100 100	SPT PQ HFS	18/18			10 -		W	VD				Sandy fine to coarse GRAVEL with trace to minor and trace cobbles; bluish grey. Very dense, wet, w graded. Gravel, subangular to subrounded; sand, f
		▲ ^{06/1}	100	PQ HFS s	18/18 14 for 55mm N>=50 Solid Bouncing		25	11 -	0.000						to coarse. 10.6m - brownish grey; saturated. 10.6 to 10.96m - no recovery from SPT; sample obtained from overcore.
			100	SPT	10/12 24/26 for 35mm N>=50		24	12	0.00.0						11.2m - brown.12.2 to 12.46m - no recovery from SPT; sample obtained from overcore.
NATURAL			100	PQ HFS	Solid Bouncing 5/12		23	13 -	0.000						
			0 100	IFS SPT	12/9 12/15 N=48 Solid		22	14 -	0.0.0 0.0.0						13.7 to 14.15m - no recovery from SPT; sample obtained from overcore.
			0 100	SPT PQ HFS	7/10 15/15 20 for 65mm		21	15							15.2 to 15.57m - no recovery from SPT.
					N>=50 Solid Bouncing		20	16 -	-						End of borehole @ 15.57m bgl (target depth).

BOREHOLE No.: BH120

PROJECT: Kyle CO-ORDINATES:	51792	207	.00	mN								E: MS		.,		oad, Hornby JOB No.: 1003207.0000 HOLE STARTED: 06/10/2018
(NZTM2000)	15616	664										HOD:				HOLE FINISHED: 06/10/2018
R.L.: DATUM:	36.10 CCD	m										D: WA				DRILLED BY: ProDrill LOGGED BY: KPS CHECKED: HJB
GEOLOGICAL												J. 11F		F	NGIN	ERING DESCRIPTION
GEOLOGICAL UNIT,														_		
GENERIC NAME, ORIGIN,											SNIS		GTH	¥-	DEFECT SPACING (cm)	Description and
MATERIAL COMPOSITION.	(36)	101.1		RY (%)		TESTS					WEATHERING	N N	SHEAR STRENGTH (KPa)	COMPRESSIV STRENGTH (MPa)	FECT SF (am)	Description and Additional Observations
	25 50 FLUD LOSS (%)			RECOVERY (%)			ES		Ē	GRAPHIC LOG		STRENGTH/DENSITY CLASSIFICATION	SHEAF	ST	B	
	12	82	WATER	CORE	METHOD		SAMPLES	RL (m)	DEPTH (m)	GRAPH	MOISTURE	STREN	20 20 20 20 20 20 20 20 20 20 20 20 20 2	 50 100	88888	
										\otimes	м	S				Capping material: SILT with some sand and trace gravel, amorphous organics; brown to dark brown.
				93	PQ HFS			Ē		\bigotimes						"Soft", moist, low plasticity, very slow dilatancy.
				0,	g			35	1	\boxtimes						Contains trace rootlets; organic odour; sand, fine to medium; gravel, fine to medium, subangular to
										×						subrounded.
				100	SPT	2/1 2/1		Ē		\otimes						Transition material: SILT with some sand and minor some gravel, amorphous organics; brown to dark
E					HFS	1/1 N=5		34	2	\otimes						brown. "Soft", moist, low plasticity, very slow dilatand Sand, fine to medium; gravel, fine to medium,
Вох 1, 0.0-3.0m				9	DA H			Ē		\otimes						subangular to subrounded.
Box			┝		-			33	3	\bigotimes						Fill: organic and/or granular soils mixed with refuse. 1.4 to 1.5m - no recovery.
					。 			- 33		\bowtie						No SPT @ 3.0m (wood).
				73	PQ HFS			Ē		\otimes						3.0 to 3.4m - no recovery.
					۵			32	4	\otimes						
			H	0	SPT	2/2	_	Ē		2						4.5 to 5.1m - no recovery.
F U 1					5	1/0 2/2		- 31	5	\land						
FILL					FIS	N=5				\otimes						For a consul description of the landfill
				86	PQ HFS			Ē		\otimes						For a general description of the landfill materials see the Geotechnical
E				0	-	4/2		30	6	\otimes						Assessment Report.
Box 2, 3,0-6,9m				<u>6</u>	SPT	2/1 2/3		Ē		\otimes						Detailed field observations of the landfill material are available on request.
BX				90	PQ HFS	N=8		Ē	7	\otimes						
				Ę	ğ			- 29		\otimes						
				9	SPT	2/2 1/2	-	Ē		\mathbb{N}						7.6 to 8.05m - no recovery in SPT.
						1/1		28	8	\mathbf{k}	w	-				8.05m - wet.
					HFS	N=5		Ē		\otimes						
					g			Ē	<u>م</u>	\otimes						
				0	SPT	7/6 7/5		- 27 -	0	Ň	1					9.1 to 9.7m - no recovery.
E			F			5/5 N=22		-		\sim						
6.9-10.6m		0/2018	bg	85	PQ HFS			26	10	\otimes						
ö ög		101/90	0.9			14/18		Ē		0.00 0.00	s	VD				Sandy fine to coarse GRAVEL with trace to minor sil
			Č.	100	SPT	15/18		Ē	11	0.00						and trace cobbles; grey. Very dense, saturated, well graded. Gravel, subangular to subrounded; sand, fin
					s	for 70mm N>=50		25		K?/	1					to coarse. 10.6 to 10.97m - no recovery from SPT; sample
				67	PQ HFS	Solid		Ē		\land						obtained from overcore. 11.1m - brown.
						14/16		24	12	0,00						11.2 to 11.8m - no recovery.
				<u>5</u>	SPT	15/15 15/5		E								12.2 to 12.58m - no recovery from SPT; sample obtained from overcore.
S NATURAL					ES	for 5mm N>=50		Ē	13 ·	¢°ċ						
NATURAL				9	PQ HFS	Solid Bouncing		23	13							
Box						6/14 16/15		Ē								12.7 to 14.09m and account from ODT
				100	SPT	15/4 for 6mm		22	14							13.7 to 14.08m - no recovery from SPT; sample obtained from overcore.
_				100	HFS	N>=50 Solid		Ē								
7-15.6m				¥	PQ HFS	Bouncing 16/16		Ē	15							
Box 5, 13,7-15, 6m				0	SPT	16/18 16		21	10	\sim						15.2 to 15.57m - no recovery from SPT.
ă			+	-	s	for 70mm N>=50		E		\downarrow						End of borehole at 15.57m bgl (target depth).
						Solid		20	16	1						
						, in the second se		F		-						
COMMENTS:																

Appendix C Ground Contamination Assessment - Kyle Park, Hornby Field screening records

Borehole	Depth (m bgl)	Stratum	PID (ppm)	Field logging notes
101	0.75	Capping	0.7	Organic odour
	3.5	Landfill	0.8	-
	5.4	Landfill	0.9	-
	7.2	Landfill	1.3	Sweet odour, ashy materials
102	2.9	Landfill	0.9	-
	4.3 6	Landfill Landfill	0.9 4.6	- Organic odour
	7.3	Landfill	1.3	-
	7.8	Landfill	2.3	-
	8.9	Landfill	3	-
	10.2	Landfill	4.4	-
103	2	Landfill	1.9	-
	2.5	Landfill	2.4	-
	5	Landfill	3.2	-
	7.4	Landfill	11.9	Fuel hydrocarbon odour, black staining to strata
	10.5	Landfill	1.5	Sweet, musty odour
104	2.5	Landfill	1.7	-
	4	Landfill	2.2	-
	5.7	Landfill	8.4	-
105	7.2	Landfill Landfill	3.4	-
105	2.9	Landfill	2.1	-
	3.4	Landfill	5.8	-
	4.5	Landfill	10.5	-
	4.55	Landfill	5.9	-
	6.1	Landfill	9.5	-
	6.9	Landfill	3.1	-
	7.6	Landfill	5.9	-
106	1.5	Landfill	0.4	-
	2.3	Landfill	0.6	Organic odour
	3	Landfill	0.7	Organic odour
	4.5	Landfill	0.7	-
	6.8	Landfill	1	-
	7.4 7.6	Landfill Landfill	0.6 1.5	-
	9.3	Landfill	1.5	-
	10.6	Natural	0.1	-
107	1.3	Landfill	2.1	Materials stained black
	1.5	Landfill	0.7	-
	3	Landfill	1.6	-
	3.9	Landfill	2.1	Sharp organic odour
	6.1	Natural	1.1	-
108	3.8	Landfill	1	-
	5.6	Landfill	27.2	Ashy materials
109	1.5	Landfill	2.8	Sharp organic odour
	3	Landfill	19.8	-
	4.5	Landfill	5.3 0.5	-
	6.1 7.6	Landfill Landfill	0.3	-
	9.1	Natural	0.2	_
110	2.5	Landfill	0.2	Organic odour
	4.25	Landfill	24.7	Grey sheen to materials
	5.7	Landfill	3.3	-
111	1	Landfill	0	-
	5.8	Landfill	0	
112	8.1	Landfill	3.1	Organic odour
	9.2	Natural	125.6	Hydrocarbon (petrol) odour
	9.5	Natural	45	Hydrocarbon (petrol) odour
	9.7	Natural	3	-
	10	Natural	76.8	Hydrocarbon (petrol) odour
	11.5	Natural Natural	82.8 3	Hydrocarbon (petrol) odour -
113	11.7 3.9	Landfill	1.7	-
113	7.3	Landfill	2.8	-
114	2.6	Landfill	0.4	-
	3.6	Landfill	2	-
	4.3	Landfill	0.5	-
		Landfill	0.2	-
116	1.4			Sharp organic odour
116	1.4 3.2	Landfill	2.2	Sharp organic odour
116	3.2 4.65	Landfill Landfill	1.7	Organic odour
	3.2 4.65 7.25	Landfill Landfill Landfill	1.7 2.3	
116	3.2 4.65 7.25 7.4	Landfill Landfill Landfill Landfill	1.7 2.3 16.5	Organic odour - -
117	3.2 4.65 7.25 7.4 8.35	Landfill Landfill Landfill Landfill Landfill	1.7 2.3 16.5 11.3	Organic odour - - Hydrocarbon (diesel, grease) odour
	3.2 4.65 7.25 7.4	Landfill Landfill Landfill Landfill	1.7 2.3 16.5	Organic odour - -

Appendix D: Laboratory Result Transcripts

- Analytica references 18-30938, 18-31313, 18-32437
- Precise references S1809281149, S1810011340, S1810151050

Analytica Laboratories Limited Ruakura Research Centre 10 Bisley Road Hamilton 3214, New Zealand Ph +64 (07) 974 4740 sales@analytica.co.nz www.analytica.co.nz

Certificate of Analysis

Tonkin and Taylor Ltd Level 3, 60 Cashel Street, West End Christchurch Attention: Mark Morley Phone: 027 7052843 Email: kstephenson@tonkintaylor.co.nz Lab Reference: Submitted by: Date Received: Date Completed: 5/10/2018 Order Number: 1003207 Reference:

18-30938 Katie Stephenson 28/09/2018

Sampling Site: Kyle Park

Report Comments

Samples were collected by yourselves (or your agent) and analysed as received at Analytica Laboratories. Samples were in acceptable condition unless otherwise noted on this report.

AMENDED REPORT. This report replaces in full a previous version [R00] sent on 05/10/2018. Previous revision did not contain a signature.

Soil Aggregate Properties and Nutrients

	Client	t Sample ID	BH101 7.2 7.2	BH103 7.4 7.4
	Da	te Sampled	20/09/2018	26/09/2018
Analyte	Unit	Reporting Limit	18-30938-3	18-30938-11
Total Cyanide*	mg/kg dry wt	0.2	2.58	<0.2

Heavy Metals in Soil

	Clien	t Sample ID	BH101 3.45 3.45	BH101 7.2 7.2	BH102 0.5 0.5	BH102 9.6 9.6	BH103 0.3 0.3
	Da	te Sampled	20/09/2018	20/09/2018	21/09/2018	21/09/2018	21/09/2018
Analyte	Unit	Reporting Limit	18-30938-2	18-30938-3	18-30938-4	18-30938-6	18-30938-7
Arsenic	mg/kg dry wt	0.125	17.8	13.7	4.99	13.4	5.93
Cadmium	mg/kg dry wt	0.005	5.04	0.69	0.081	0.40	0.097
Chromium	mg/kg dry wt	0.125	45.7	17.5	14.4	19.0	15.2
Copper	mg/kg dry wt	0.075	270	76.9	9.00	24.3	14.8
Lead	mg/kg dry wt	0.05	406	166	28.8	183	20.8
Mercury	mg/kg dry wt	0.025	0.45	0.42	0.060	0.29	0.044
Nickel	mg/kg dry wt	0.05	112	31.5	11.3	16.9	11.3
Zinc	mg/kg dry wt	0.05	417	257	67.7	200	64.5

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation, with the exception of tests marked *, which are not accredited.

Heavy Metals in Soil

	Clien	t Sample ID	BH103 10.5 10.5	BH104 1.0 1.0	BH104 7.7 7.7	BH105 0.9 0.9	BH105 6.0 6.0
	Da	te Sampled	26/09/2018	26/09/2018	26/09/2018	27/09/2018	27/09/2018
Analyte	Unit	Reporting Limit	18-30938-10	18-30938-12	18-30938-14	18-30938-15	18-30938-17
Arsenic	mg/kg dry wt	0.125	9.56	7.16	30.2	16.5	8.28
Cadmium	mg/kg dry wt	0.005	3.07	0.89	2.52	0.29	0.085
Chromium	mg/kg dry wt	0.125	26.1	17.3	31.6	17.2	13.5
Copper	mg/kg dry wt	0.075	27.5	54.5	108	62.5	9.53
Lead	mg/kg dry wt	0.05	77.2	90.2	281	105	32.7
Mercury	mg/kg dry wt	0.025	0.44	0.087	0.14	0.20	0.086
Nickel	mg/kg dry wt	0.05	31.5	14.3	40.2	17.2	11.4
Zinc	mg/kg dry wt	0.05	197	1,300	285	126	113

Semivolatile Organic Compounds - Soil

	Client	Sample ID	BH101 3.45 3.45	BH101 7.2 7.2	BH102 0.5 0.5	BH102 9.6 9.6	BH103 0.3 0.3
	Da	te Sampled	20/09/2018	20/09/2018	21/09/2018	21/09/2018	21/09/2018
Analyte	Unit	Reporting Limit	18-30938-2	18-30938-3	18-30938-4	18-30938-6	18-30938-7
Phenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Chlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Nitrophenol	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,4-Dimethylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloro-3- methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4,5-Trichlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
2,4,6-Trichlorophenol	mg/kg dry wt	5	<5.0	<5.0	<5.0	<5.0	<5.0
2,3,4,6- Tetrachlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
4-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Nitrophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
Naphthalene	mg/kg dry wt	0.1	0.4	<0.1	0.7	0.2	<0.1
2-Methylnaphthalene	mg/kg dry wt	0.1	0.1	<0.1	0.8	0.2	<0.1
2-Chloronaphthalene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthene	mg/kg dry wt	0.1	0.2	<0.1	3.2	<0.1	<0.1
Acenaphthylene	mg/kg dry wt	0.1	<0.1	<0.1	1.1	<0.1	<0.1
Fluorene	mg/kg dry wt	0.1	0.5	<0.1	6.2	0.2	<0.1
Phenanthrene	mg/kg dry wt	0.1	3.7	0.2	92.5	1.3	<0.1
Anthracene	mg/kg dry wt	0.1	0.6	0.1	9.9	0.2	<0.1
Fluoranthene	mg/kg dry wt	0.1	5.4	0.3	86.0	1.7	<0.1
Benzo[a]anthracene	mg/kg dry wt	0.1	2.3	0.1	15.5	0.5	<0.1
Chrysene	mg/kg dry wt	0.1	1.7	<0.1	10.5	0.5	<0.1
Benzo[b]fluoranthene	mg/kg dry wt	0.1	2.1	<0.1	11.2	0.5	<0.1
Benzo[k]fluoranthene	mg/kg dry wt	0.1	0.7	<0.1	4.8	0.3	<0.1
Benzo[a]pyrene	mg/kg dry wt	0.1	2.1	<0.1	10.0	0.3	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.1	1.9	<0.1	7.3	<0.1	<0.1
Dibenzo[a,h]anthracene	mg/kg dry wt	0.1	0.4	<0.1	1.3	<0.1	<0.1
Benzo[g,h,i]perylene	mg/kg dry wt	0.1	1.7	<0.1	5.2	0.4	<0.1
Pyrene	mg/kg dry wt	0.2	6.0	0.2	62.9	1.5	<0.2
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.1	3.3	0.3	16.2	0.6	0.2
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.1	3.3	<0.1	16.2	0.5	<0.1
4,4'-DDD	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	7.0	<0.3

Report ID 18-30938-[R01]

^{01]} Page 2 of 7 R This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

	Client	Sample ID	BH101 3.45 3.45	BH101 7.2 7.2	BH102 0.5 0.5	BH102 9.6 9.6	BH103 0.3 0.3
	Da	te Sampled	20/09/2018	20/09/2018	21/09/2018	21/09/2018	21/09/2018
4,4'-DDE	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4,4'-DDT	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
alpha-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
peta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
gamma-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
delta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Aldrin	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
cis-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
rans-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dieldrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan I	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Endosulfan II	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan sulphate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin aldehyde Endrin ketone	mg/kg dry wt	0.5 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
ndrin ketone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Heptachlor	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor epoxide	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Vethoxychlor	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-ethylhexyl)	mg/kg dry wt	0.5	1.2	2.4	<0.5	<0.5	<0.5
ohthalate Butyl benzyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-butyl phthalate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Di-n-octyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dimethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
N-Nitrosodiphenylamine	mg/kg dry wt	0.3	0.8	<0.3	<0.3	<0.3	<0.3
N-Nitrosodi-n- propylamine	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	< 0.3
2,6-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Azobenzene	mg/kg dry wt	0.5	<0.5	<0.5	7.0	<0.5	<0.5
sophorone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nitrobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Bromophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chlorophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloroethyl) ether	mg/kg dry wt	0.3	<0.3	2.2	<0.3	<0.3	<0.3
Bis(2-Chloro-1- methylethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloroethoxy) methane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,3-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
,4-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorobutadiene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorocylopenta diene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachloroethane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1-Chloroaniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Nitroaniline	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
3-Nitroaniline	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Aniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
3,3'-Dichlorobenzidine	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Report ID 18-30938-[R01]

	Client	Sample ID	BH101 3.45 3.45	BH101 7.2 7.2	BH102 0.5 0.5	BH102 9.6 9.6	BH103 0.3 0.3
	Da	te Sampled	20/09/2018	20/09/2018	21/09/2018	21/09/2018	21/09/2018
Dibenzofuran	mg/kg dry wt	0.3	0.3	<0.3	3.6	<0.3	<0.3
Methyl methanesulfonate	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethyl methanesulfonate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Benzyl alcohol	mg/kg dry wt	1	<1	<1	<1	<1	<1
Phenol-d5 (Surrogate)	%	1	70.4	93.4	109.0	71.2	73.1
2-Fluorophenol (Surrogate)	%	1	94.3	126.6	148.5	93.3	101.9
2-Fluorobiphenyl (Surrogate)	%	1	163.9	157.8	120.0	144.2	154.0
2,4,6-Tribromophenol (Surrogate)	%	1	123.3	124.9	115.7	99.4	88.4
p-Terphenyl-d14 (Surrogate)	%	1	156.1	161.4	139.2	140.9	123.9
Nitrobenzene-d5 (Surrogate)	%	1	131.6	121.3	120.8	107.0	115.3

Semivolatile Organic Compounds - Soil

	Clien	Client Sample ID		BH104 1.0 1.0	BH104 7.7 7.7	BH105 0.9 0.9	BH105 6.0 6.0
	Da	te Sampled	26/09/2018	26/09/2018	26/09/2018	27/09/2018	27/09/2018
Analyte	Unit	Reporting Limit	18-30938-10	18-30938-12	18-30938-14	18-30938-15	18-30938-17
Phenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Chlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Nitrophenol	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,4-Dimethylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloro-3- methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4,5-Trichlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
2,4,6-Trichlorophenol	mg/kg dry wt	5	<5.0	<5.0	<5.0	<5.0	<5.0
2,3,4,6- Tetrachlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
4-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Nitrophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
Naphthalene	mg/kg dry wt	0.1	<0.1	<0.1	1.1	1.5	16.4
2-Methylnaphthalene	mg/kg dry wt	0.1	<0.1	<0.1	0.1	0.9	13.0
2-Chloronaphthalene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthene	mg/kg dry wt	0.1	<0.1	<0.1	0.2	1.4	24.6
Acenaphthylene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	2.6	3.9
Fluorene	mg/kg dry wt	0.1	<0.1	<0.1	0.3	6.8	61.6
Phenanthrene	mg/kg dry wt	0.1	<0.1	<0.1	0.6	75.6	739.4
Anthracene	mg/kg dry wt	0.1	<0.1	<0.1	0.1	7.1	80.2
Fluoranthene	mg/kg dry wt	0.1	0.2	0.1	0.8	73.2	355.9
Benzo[a]anthracene	mg/kg dry wt	0.1	<0.1	<0.1	0.4	17.9	89.9
Chrysene	mg/kg dry wt	0.1	<0.1	<0.1	0.3	13.0	62.9
Benzo[b]fluoranthene	mg/kg dry wt	0.1	<0.1	<0.1	0.6	15.0	68.7
Benzo[k]fluoranthene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	5.9	26.9
Benzo[a]pyrene	mg/kg dry wt	0.1	<0.1	<0.1	0.4	12.8	66.0
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.1	<0.1	<0.1	0.7	11.8	50.0
Dibenzo[a,h]anthracene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	2.0	6.4
Benzo[g,h,i]perylene	mg/kg dry wt	0.1	<0.1	0.3	0.5	8.7	37.5
Pyrene	mg/kg dry wt	0.2	<0.2	<0.2	0.7	61.9	343.7

	Client	Sample ID	BH103 10.5 10.5	BH104 1.0 1.0	BH104 7.7 7.7	BH105 0.9 0.9	BH105 6.0 6.0
	Da	te Sampled	26/09/2018	26/09/2018	26/09/2018	27/09/2018	27/09/2018
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.1	0.2	0.2	0.7	20.7	100.2
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.1	<0.1	<0.1	0.6	20.7	100.2
4,4'-DDD	mg/kg dry wt	0.3	3.5	<0.3	0.5	<0.3	<0.3
4,4'-DDE	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4,4'-DDT	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
alpha-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
beta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
gamma-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
delta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Aldrin	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
cis-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
trans-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dieldrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	0.7	<0.5
Endosulfan I	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Endosulfan II	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan sulphate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin aldehyde	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin ketone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor epoxide	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Methoxychlor	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-ethylhexyl) phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	1.3
Butyl benzyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-butyl phthalate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Di-n-octyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dimethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
N-Nitrosodiphenylamine	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
N-Nitrosodi-n- propylamine	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Azobenzene	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	6.8	38.3
Isophorone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nitrobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Bromophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chlorophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloroethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloro-1- methylethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloroethoxy) methane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,3-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,4-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorobutadiene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorocylopenta	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachloroethane		0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloroaniline	mg/kg dry wt	0.3 1.0					
4-Onioroaniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Report ID 18-30938-[R01]

Report Date 9/10/2018

^{01]} Page 5 of 7 R This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

	Client Sample ID		BH103 10.5 10.5	BH104 1.0 1.0	BH104 7.7 7.7	BH105 0.9 0.9	BH105 6.0 6.0
	Da	te Sampled	26/09/2018	26/09/2018	26/09/2018	27/09/2018	27/09/2018
2-Nitroaniline	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
3-Nitroaniline	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Aniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
3,3'-Dichlorobenzidine	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenzofuran	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	4.6	44.8
Methyl methanesulfonate	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethyl methanesulfonate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Benzyl alcohol	mg/kg dry wt	1	<1	<1	<1	<1	<1
Phenol-d5 (Surrogate)	%	1	60.6	65.8	47.3	68.0	70.6
2-Fluorophenol (Surrogate)	%	1	80.7	89.0	60.8	96.5	92.0
2-Fluorobiphenyl (Surrogate)	%	1	207.6	193.4	169.0	128.4	108.3
2,4,6-Tribromophenol (Surrogate)	%	1	97.8	92.5	73.8	111.2	105.8
p-Terphenyl-d14 (Surrogate)	%	1	169.8	155.8	152.5	136.1	148.4
Nitrobenzene-d5 (Surrogate)	%	1	131.1	124.7	125.9	119.5	105.8

Moisture Content

Clier	BH101 3.45 3.45	BH101 7.2 7.2	BH102 0.5 0.5	BH102 9.6 9.6	BH103 0.3 0.3	
Date Sampled		20/09/2018	20/09/2018	21/09/2018	21/09/2018	21/09/2018
Analyte Unit	Reporting Limit	18-30938-2	18-30938-3	18-30938-4	18-30938-6	18-30938-7
Moisture Content %	1	38	41	13	39	22

Moisture Content

Client Sample ID		BH103 10.5 10.5	BH103 7.4 7.4	BH104 1.0 1.0	BH104 7.7 7.7	BH105 0.9 0.9
Date Sampled		26/09/2018	26/09/2018	26/09/2018	26/09/2018	27/09/2018
Analyte Unit	Reporting Limit	18-30938-10	18-30938-11	18-30938-12	18-30938-14	18-30938-15
Moisture Content %	1	39	26	27	52	14

Moisture Content

	Client	BH105 6.0 6.0	
	Da	te Sampled	27/09/2018
Analyte	Unit	Reporting Limit	18-30938-17
Moisture Content	%	1	10

Method Summary

Cyanide	Water extraction followed by acid distillation, distillate measured by colourmetric analysis. APHA
	Method 4500-CN C and E.

- **Elements in Soil** Acid digestion followed by ICP-MS analysis. US EPA method 200.8.
- SVOC in Soil Solvent extraction, followed by GC-MS analysis.
- Moisture Moisture content is determined gravimetrically by drying at 103 °C.

Statontry .

Karam W

Sharelle Frank, B.Sc. (Tech) Technologist

Tom Featonby, M.Sc. Technologist Karam Wadi, B.E. (Hons) Technologist

Analytica Laboratories Limited Ruakura Research Centre 10 Bisley Road Hamilton 3214, New Zealand Ph +64 (07) 974 4740 sales@analytica.co.nz www.analytica.co.nz

Certificate of Analysis

Tonkin and Taylor Ltd Level 3, 60 Cashel Street, West End Christchurch Attention: Mark Morley Phone: 027 7052843 Email: kstephenson@tonkintaylor.co.nz Lab Reference:18-31313Submitted by:Katie StephensonDate Received:2/10/2018Date Completed:17/10/2018Order Number:1003207Reference:

Sampling Site: Kyle Park

Report Comments

Samples were collected by yourselves (or your agent) and analysed as received at Analytica Laboratories. Samples were in acceptable condition unless otherwise noted on this report.

Heavy Metals in Soil

	Client Sample ID			BH106 7.5 7.5	BH107 0.3 0.3	BH107 4.3 4.3	BH109 5.2 5.2
	Da	te Sampled	28/09/2018	28/09/2018	28/09/2018	28/09/2018	28/09/2018
Analyte	Unit	Reporting Limit	18-31313-1	18-31313-2	18-31313-4	18-31313-5	18-31313-8
Arsenic	mg/kg dry wt	0.125	10.4	36.0	5.99	4.98	15.1
Cadmium	mg/kg dry wt	0.005	0.20	0.32	0.13	0.51	0.50
Chromium	mg/kg dry wt	0.125	31.7	24.4	15.1	18.6	30.3
Copper	mg/kg dry wt	0.075	61.5	29.4	14.2	13.6	36.4
Lead	mg/kg dry wt	0.05	137	65.4	33.5	21.0	111
Mercury	mg/kg dry wt	0.025	0.077	0.35	0.064	0.20	0.12
Nickel	mg/kg dry wt	0.05	22.4	23.4	12.6	16.6	33.8
Zinc	mg/kg dry wt	0.05	109	143	74.1	371	149

Heavy Metals in Soil

	Client	BH109 8.5 8.5			
	Da	te Sampled	28/09/2018		
Analyte	Unit	Unit Reporting Limit			
Arsenic	mg/kg dry wt	0.125	4.04		
Cadmium	mg/kg dry wt	0.005	0.033		
Chromium	mg/kg dry wt	0.125	11.0		
Copper	mg/kg dry wt	0.075	6.33		
Lead	mg/kg dry wt	0.05	15.1		
Mercury	mg/kg dry wt	0.025	0.052		
Nickel	mg/kg dry wt	mg/kg dry wt 0.05			
Zinc	mg/kg dry wt	0.05	45.3		

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation, with the exception of tests marked *, which are not accredited.

	Client	Sample ID	BH106 2.3 2.3	BH106 7.5 7.5	BH107 0.3 0.3	BH107 4.3 4.3	BH109 5.2 5.2
	Date Sampled		28/09/2018	28/09/2018	28/09/2018	28/09/2018	28/09/2018
Analyte	Unit	Reporting Limit	18-31313-1	18-31313-2	18-31313-4	18-31313-5	18-31313-8
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.1	8.5	0.3	0.2	0.2	2.5
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.1	8.5	<0.1	<0.1	<0.1	2.4
Phenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Chlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Nitrophenol	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,4-Dimethylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	14.3	<0.3
2,4-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloro-3- methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4,5-Trichlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
2,4,6-Trichlorophenol	mg/kg dry wt	5	<5.0	<5.0	<5.0	<5.0	<5.0
2,3,4,6- Tetrachlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
4-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	10.9	<0.3
4-Metryphenol	mg/kg dry wt	5	<5	<0.3	<5	<5	<5
Naphthalene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	0.4	0.1
2-Methylnaphthalene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.4	<0.1
2-Chloronaphthalene	mg/kg dry wt	0.3	<0.3	<0.1	<0.3	<0.1	<0.1
Acenaphthene		0.3	0.4	<0.3	<0.3	<0.3	0.1
	mg/kg dry wt				1		
	mg/kg dry wt	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg dry wt	0.1	0.9	<0.1	<0.1	<0.1	0.2
Phenanthrene	mg/kg dry wt	0.1	5.6	0.1	<0.1	<0.1	0.7
Anthracene	mg/kg dry wt	0.1	1.4	<0.1	<0.1	<0.1	0.1
Fluoranthene	mg/kg dry wt	0.1	11.7	0.4	0.2	0.3	2.5
Benzo[a]anthracene	mg/kg dry wt	0.1	4.5	0.2	<0.1	<0.1	1.0
Chrysene	mg/kg dry wt	0.1	3.0	<0.1	0.1	0.1	0.5
Benzo[b]fluoranthene	mg/kg dry wt	0.1	6.2	0.2	<0.1	<0.1	1.9
Benzo[k]fluoranthene	mg/kg dry wt	0.1	1.9	<0.1	<0.1	<0.1	0.4
Benzo[a]pyrene	mg/kg dry wt	0.1	6.5	<0.1	<0.1	<0.1	2.0
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.1	2.1	<0.1	<0.1	<0.1	<0.1
Dibenzo[a,h]anthracene	mg/kg dry wt	0.1	0.5	<0.1	<0.1	<0.1	<0.1
Benzo[g,h,i]perylene	mg/kg dry wt	0.1	1.6	<0.1	<0.1	<0.1	0.5
Pyrene	mg/kg dry wt	0.2	8.5	0.3	<0.2	<0.2	2.1
4,4'-DDD	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	0.9	<0.3
4,4'-DDE	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4,4'-DDT	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
alpha-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
beta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
gamma-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
delta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Aldrin	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
cis-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
rans-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dieldrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan I	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Endosulfan II	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan sulphate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin aldehyde	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5

	Client	Sample ID	BH106 2.3 2.3	BH106 7.5 7.5	BH107 0.3 0.3	BH107 4.3 4.3	BH109 5.2 5.2
	Da	te Sampled	28/09/2018	28/09/2018	28/09/2018	28/09/2018	28/09/2018
Endrin ketone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor epoxide	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Methoxychlor	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-ethylhexyl) phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	1.5	<0.5
Butyl benzyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-butyl phthalate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Di-n-octyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
Diethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	< 0.3
Dimethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
N-Nitrosodiphenylamine	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
N-Nitrosodi-n- propylamine	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Azobenzene	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
sophorone Nitrobenzene	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	mg/kg ury wi	0.3	<0.5	<0.5	<0.5	<0.5	<0.5
4-Bromophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chlorophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloroethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloro-1- methylethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloroethoxy) methane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,3-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,4-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorobutadiene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorocylopenta diene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachloroethane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloroaniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Nitroaniline	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
3-Nitroaniline	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Aniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
3,3'-Dichlorobenzidine	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenzofuran	mg/kg dry wt	0.3	0.4	<0.3	<0.3	<0.3	<0.3
Methyl methanesulfonate	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethyl methanesulfonate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Benzyl alcohol	mg/kg dry wt	1	<1	<1	<1	<1	<1
Phenol-d5 (Surrogate)	%	1	109.7	122.7	116.1	108.1	126.6
2-Fluorophenol (Surrogate)	%	1	108.8	127.6	124.9	94.4	150.6
2-Fluorobiphenyl (Surrogate)	%	1	115.1	138.5	134.6	124.4	106.5
2,4,6-Tribromophenol (Surrogate)	%	1	145.2	90.0	92.6	120.4	98.8
p-Terphenyl-d14 (Surrogate)	%	1	109.9	136.7	116.1	112.3	104.6
Nitrobenzene-d5 (Surrogate)	%	1	108.1	88.2	104.0	82.5	86.9

	BH109 8.5 8.5		
	Da	28/09/2018	
Analyte	Unit	Reporting Limit	18-31313-9
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.1	0.2
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.1	<0.1
Phenol	mg/kg dry wt	0.3	<0.3
2-Chlorophenol	mg/kg dry wt	0.3	<0.3
2-Methylphenol	mg/kg dry wt	0.3	<0.3
2-Nitrophenol	mg/kg dry wt	1.0	<1.0
2,4-Dimethylphenol	mg/kg dry wt	0.3	<0.3
2,4-Dichlorophenol	mg/kg dry wt	0.3	<0.3
2,6-Dichlorophenol	mg/kg dry wt	0.3	<0.3
4-Chloro-3- methylphenol	mg/kg dry wt	0.3	<0.3
2,4,5-Trichlorophenol	mg/kg dry wt	5	<5
2,4,6-Trichlorophenol	mg/kg dry wt	5	<5.0
2,3,4,6- Tetrachlorophenol	mg/kg dry wt	5	<5
4-Methylphenol	mg/kg dry wt	0.3	<0.3
4-Nitrophenol	mg/kg dry wt	5	<5
Naphthalene	mg/kg dry wt	0.1	<0.1
2-Methylnaphthalene	mg/kg dry wt	0.1	<0.1
2-Chloronaphthalene	mg/kg dry wt	0.3	<0.3
Acenaphthene	mg/kg dry wt	0.1	<0.1
Acenaphthylene	mg/kg dry wt	0.1	<0.1
Fluorene	mg/kg dry wt	0.1	<0.1
Phenanthrene	mg/kg dry wt	0.1	<0.1
Anthracene	mg/kg dry wt	0.1	<0.1
Fluoranthene	mg/kg dry wt	0.1	0.1
Benzo[a]anthracene	mg/kg dry wt	0.1	<0.1
Chrysene	mg/kg dry wt	0.1	<0.1
Benzo[b]fluoranthene	mg/kg dry wt	0.1	<0.1
Benzo[k]fluoranthene	mg/kg dry wt	0.1	<0.1
Benzo[a]pyrene	mg/kg dry wt	0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.1	<0.1
Dibenzo[a,h]anthracene	mg/kg dry wt	0.1	<0.1
Benzo[g,h,i]perylene	mg/kg dry wt	0.1	<0.1
Pyrene	mg/kg dry wt	0.2	<0.2
4,4'-DDD	mg/kg dry wt	0.3	<0.2
4,4'-DDE	mg/kg dry wt	0.3	<0.3
4,4'-DDL 4,4'-DDT	mg/kg dry wt	0.5	<0.5
alpha-BHC	mg/kg dry wt	0.3	<0.3
beta-BHC	mg/kg dry wt	0.3	<0.3
gamma-BHC	mg/kg dry wt	0.3	<0.3
delta-BHC	mg/kg dry wt	0.3	<0.3
Aldrin		0.3	<0.3
	mg/kg dry wt mg/kg dry wt		
cis-Chlordane		0.3	< 0.3
trans-Chlordane	mg/kg dry wt	0.3	<0.3
Dieldrin	mg/kg dry wt	0.5	<0.5
Endosulfan I	mg/kg dry wt	0.3	<0.3
Endosulfan II	mg/kg dry wt	0.5	<0.5
Endosulfan sulphate	mg/kg dry wt	0.5	<0.5
Endrin	mg/kg dry wt	0.5	<0.5
Endrin aldehyde	mg/kg dry wt	0.5	<0.5

	Client	t Sample ID	BH109 8.5 8.5
	Da	te Sampled	28/09/2018
Endrin ketone	mg/kg dry wt	0.5	<0.5
Hexachlorobenzene	mg/kg dry wt	0.3	<0.3
Heptachlor	mg/kg dry wt	0.3	<0.3
Heptachlor epoxide	mg/kg dry wt	0.3	<0.3
Methoxychlor	mg/kg dry wt	0.5	<0.5
Bis(2-ethylhexyl) phthalate	mg/kg dry wt	0.5	<0.5
Butyl benzyl phthalate	mg/kg dry wt	0.5	<0.5
Di-n-butyl phthalate	mg/kg dry wt	1	<1
Di-n-octyl phthalate	mg/kg dry wt	0.5	<0.5
Diethyl phthalate	mg/kg dry wt	0.3	<0.3
Dimethyl phthalate	mg/kg dry wt	0.3	<0.3
N-Nitrosodiphenylamine	mg/kg dry wt	0.3	<0.3
N-Nitrosodi-n- propylamine	mg/kg dry wt	0.3	<0.3
2,4-Dinitrotoluene	mg/kg dry wt	0.3	<0.3
2,6-Dinitrotoluene	mg/kg dry wt	0.3	<0.3
Azobenzene	mg/kg dry wt	0.5	<0.5
Isophorone	mg/kg dry wt	0.5	<0.5
Nitrobenzene	mg/kg dry wt	0.3	<0.3
4-Bromophenyl phenyl ether	mg/kg dry wt	0.3	<0.3
4-Chlorophenyl phenyl ether	mg/kg dry wt	0.3	<0.3
Bis(2-Chloroethyl) ether	mg/kg dry wt	0.3	<0.3
Bis(2-Chloro-1- methylethyl) ether	mg/kg dry wt	0.3	<0.3
Bis(2-Chloroethoxy) methane	mg/kg dry wt	0.3	<0.3
1,2-Dichlorobenzene	mg/kg dry wt	0.3	<0.3
1,3-Dichlorobenzene	mg/kg dry wt	0.3	<0.3
1,4-Dichlorobenzene	mg/kg dry wt	0.3	<0.3
Hexachlorobutadiene	mg/kg dry wt	0.3	<0.3
Hexachlorocylopenta diene	mg/kg dry wt	0.3	<0.3
Hexachloroethane	mg/kg dry wt	0.3	<0.3
4-Chloroaniline	mg/kg dry wt	1.0	<1.0
2-Nitroaniline	mg/kg dry wt	0.3	<0.3
3-Nitroaniline	mg/kg dry wt	0.5	<0.5
Aniline	mg/kg dry wt	1.0	<1.0
3,3'-Dichlorobenzidine	mg/kg dry wt	0.5	<0.5
Dibenzofuran	mg/kg dry wt	0.3	<0.3
Methyl methanesulfonate	mg/kg dry wt	1.0	<1.0
Ethyl methanesulfonate	mg/kg dry wt	1	<1
Benzyl alcohol	mg/kg dry wt	1	<1
Phenol-d5 (Surrogate)	%	1	109.2
2-Fluorophenol (Surrogate)	%	1	114.7
2-Fluorobiphenyl (Surrogate)	%	1	121.6
2,4,6-Tribromophenol (Surrogate)	%	1	76.0
p-Terphenyl-d14 (Surrogate)	%	1	123.0
Nitrobenzene-d5 (Surrogate)	%	1	96.7

Moisture Content

с	ent Sample ID	BH106 2.3 2.3	BH106 7.5 7.5	BH107 0.3 0.3	BH107 4.3 4.3	BH109 5.2 5.2
	Date Sampled		28/09/2018	28/09/2018	28/09/2018	28/09/2018
Analyte Unit Reporting Limit		18-31313-1	18-31313-2	18-31313-4	18-31313-5	18-31313-8
Moisture Content	% 1	14	30	18	32	13

Moisture Content

	Client	Sample ID	BH109 8.5 8.5
	Da	te Sampled	28/09/2018
Analyte	Unit	Reporting Limit	18-31313-9
Moisture Content	%	1	17

Method Summary

Elements in Soil Acid digestion followed by ICP-MS analysis. (US EPA method 200.8).

SVOC in Soil Solvent extraction, followed by GC-MS analysis.(In-house based on US EPA 8270).

Moisture content is determined gravimetrically by drying at 103 °C.

Moisture

Sharelle Frank, B.Sc. (Tech) Technologist

Tom Featonby, M.Sc. Technologist

Analytica Laboratories Limited Ruakura Research Centre 10 Bisley Road Hamilton 3214, New Zealand Ph +64 (07) 974 4740 sales@analytica.co.nz www.analytica.co.nz

Certificate of Analysis

Tonkin and Taylor Ltd Level 3, 60 Cashel Street, West End Christchurch Attention: Mark Morley Phone: 027 7052843 Email: kstephenson@tonkintaylor.co.nz Lab Reference:18-32437Submitted by:Katie StephensonDate Received:13/10/2018Date Completed:19/10/2018Order Number:1003207Reference:Kyle Park

Sampling Site: Kyle Park

Report Comments

Samples were collected by yourselves (or your agent) and analysed as received at Analytica Laboratories. Samples were in acceptable condition unless otherwise noted on this report.

Heavy Metals in Soil

	Clien	t Sample ID	BH108 0.85	BH108 5.6	BH108 7.8	BH110 0.4	BH110 2.5
	Da	te Sampled	2/10/2018	2/10/2018	2/10/2018	1/10/2018	1/10/2018
Analyte	Unit	Reporting Limit	18-32437-1	18-32437-2	18-32437-3	18-32437-5	18-32437-6
Arsenic	mg/kg dry wt	0.125	8.58	4.15	3.76	4.86	11.9
Cadmium	mg/kg dry wt	0.005	0.82	0.17	0.049	0.10	0.069
Chromium	mg/kg dry wt	0.125	17.3	21.2	11.1	16.5	11.7
Copper	mg/kg dry wt	0.075	54.9	22.3	9.70	7.96	6.14
Lead	mg/kg dry wt	0.05	259	44.7	11.9	18.1	19.9
Mercury	mg/kg dry wt	0.025	0.077	0.11	0.75	0.059	<0.025
Nickel	mg/kg dry wt	0.05	14.5	31.2	10.7	13.2	7.10
Zinc	mg/kg dry wt	0.05	169	76.1	57.5	61.0	30.6

Heavy Metals in Soil

	Clien	t Sample ID	BH111 1.0	BH111 3.5	BH112 1.0	BH112 9.2	BH113 0.2
	Da	te Sampled	8/10/2018	8/10/2018	5/10/2018	5/10/2018	2/10/2018
Analyte	Unit	Reporting Limit	18-32437-11	18-32437-12	18-32437-14	18-32437-15	18-32437-18
Arsenic	mg/kg dry wt	0.125	5.12	73.9	6.83	4.73	6.05
Cadmium	mg/kg dry wt	0.005	0.13	0.23	0.11	0.046	0.082
Chromium	mg/kg dry wt	0.125	4.29	27.9	15.6	15.7	17.5
Copper	mg/kg dry wt	0.075	11.3	79.8	13.9	9.18	10.6
Lead	mg/kg dry wt	0.05	27.5	71.7	31.8	18.5	28.9
Mercury	mg/kg dry wt	0.025	0.041	0.20	0.099	0.092	0.066
Nickel	mg/kg dry wt	0.05	4.90	45.4	12.1	13.1	14.4
Zinc	mg/kg dry wt	0.05	175	420	76.3	54.7	73.5

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation, with the exception of tests marked *, which are not accredited.

Heavy Metals in Soil

	Client Sample ID			BH114 0.2	BH114 4.1	BH115 1.6	BH115 6.2
	Da	te Sampled	2/10/2018	3/10/2018	3/10/2018	8/10/2018	8/10/2018
Analyte	Unit	Reporting Limit	18-32437-19	18-32437-21	18-32437-22	18-32437-25	18-32437-26
Arsenic	mg/kg dry wt	0.125	6.82	5.61	13.7	5.97	2.36
Cadmium	mg/kg dry wt	0.005	0.13	0.15	0.29	0.094	0.034
Chromium	mg/kg dry wt	0.125	16.5	16.1	28.3	17.9	12.6
Copper	mg/kg dry wt	0.075	14.0	24.2	159	9.84	5.72
Lead	mg/kg dry wt	0.05	45.6	48.6	56.4	28.8	11.3
Mercury	mg/kg dry wt	0.025	0.061	0.065	0.19	0.045	0.055
Nickel	mg/kg dry wt	0.05	12.3	14.3	41.9	13.3	9.58
Zinc	mg/kg dry wt	0.05	82.2	105	105	71.1	37.4

Heavy Metals in Soil

	Clien	BH116 0.7	BH116 5.6	BH117 0.5	BH117 2.4	BH118 0.75	
	Da	te Sampled	8/10/2018	8/10/2018	9/10/2018	9/10/2018	9/10/2018
Analyte	Unit	Reporting Limit	18-32437-27	18-32437-28	18-32437-30	18-32437-31	18-32437-34
Arsenic	mg/kg dry wt	0.125	5.00	27.8	4.08	25.0	5.06
Cadmium	mg/kg dry wt	0.005	0.12	0.26	0.057	375	0.28
Chromium	mg/kg dry wt	0.125	14.1	20.5	13.7	40.7	14.2
Copper	mg/kg dry wt	0.075	26.1	51.4	7.95	129	15.9
Lead	mg/kg dry wt	0.05	48.3	33.6	38.1	3,890	71.3
Mercury	mg/kg dry wt	0.025	0.063	0.068	0.046	5.2	0.10
Nickel	mg/kg dry wt	0.05	11.4	39.3	11.3	63.1	11.2
Zinc	mg/kg dry wt	0.05	78.5	64.2	51.5	229	68.0

Heavy Metals in Soil

	Client Sample ID			BH119 1.0	BH119 6.3	BH120 0.8	BH120 3.8
	Da	te Sampled	9/10/2018	10/10/2018	10/10/2018	9/10/2018	9/10/2018
Analyte	Unit	Reporting Limit	18-32437-35	18-32437-37	18-32437-38	18-32437-39	18-32437-40
Arsenic	mg/kg dry wt	0.125	14.9	61.9	39.9	8.45	44.2
Cadmium	mg/kg dry wt	0.005	26.6	0.14	0.14	0.20	0.41
Chromium	mg/kg dry wt	0.125	117	15.4	16.5	12.5	18.8
Copper	mg/kg dry wt	0.075	24.8	15.4	15.3	20.7	16.4
Lead	mg/kg dry wt	0.05	160	33.1	151	126	87.8
Mercury	mg/kg dry wt	0.025	0.43	0.077	0.13	0.097	0.32
Nickel	mg/kg dry wt	0.05	34.3	11.2	11.1	10.2	10.5
Zinc	mg/kg dry wt	0.05	315	74.1	163	84.7	117

Heavy Metals in Soil

	Client	Sample ID	DUP 1	DUP 2	DUP 3	DUP 4
Date Sampled						
Analyte	Unit	Reporting Limit	18-32437-42	18-32437-43	18-32437-44	18-32437-45
Arsenic	mg/kg dry wt	0.125	6.57	4.62	5.70	31.4
Cadmium	mg/kg dry wt	0.005	0.14	0.047	0.072	0.14
Chromium	mg/kg dry wt	0.125	14.7	16.9	20.2	16.8
Copper	mg/kg dry wt	0.075	13.6	9.64	8.16	20.9
Lead	mg/kg dry wt	0.05	42.9	26.1	24.5	191
Mercury	mg/kg dry wt	0.025	0.055	0.092	0.045	0.28

Report ID 18-32437-[R00]

Page 2 of 14

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

Heavy Metals in Soil

Client Sample ID			DUP 1	DUP 2	DUP 3	DUP 4
	Dat	te Sampled				
Nickel mg/kg dry wt 0.05		11.9	12.4	13.6	11.5	
Zinc	Zinc mg/kg dry wt 0.05			55.2	60.3	149

Total Petroleum Hydrocarbons - Soil

	Client	Sample ID	BH112 9.2	BH114 15.0
	Da	te Sampled	5/10/2018	3/10/2018
Analyte	Unit	Reporting Limit	18-32437-15	18-32437-24
C7-C9	mg/kg dry wt	10	<10	<10
C10-C14	mg/kg dry wt	15	2,052	<15
C15-C36	mg/kg dry wt	25	6,350	<25
C7-C36 (Total)	mg/kg dry wt	50	8,402	<50

Semivolatile Organic Compounds - Soil

	Client	Sample ID	BH108 0.85	BH108 5.6	BH108 7.8	BH110 0.4	BH110 2.5
	Date Sampled		2/10/2018	2/10/2018	2/10/2018	1/10/2018	1/10/2018
Analyte	Unit	Reporting Limit	18-32437-1	18-32437-2	18-32437-3	18-32437-5	18-32437-6
Phenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Chlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Nitrophenol	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,4-Dimethylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloro-3- methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4,5-Trichlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
2,4,6-Trichlorophenol	mg/kg dry wt	5	<5.0	<5.0	<5.0	<5.0	<5.0
2,3,4,6- Tetrachlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
4-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Nitrophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
Naphthalene	mg/kg dry wt	0.1	<0.1	0.4	<0.1	<0.1	<0.1
2-Methylnaphthalene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Chloronaphthalene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg dry wt	0.1	0.3	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg dry wt	0.1	0.4	0.1	<0.1	<0.1	<0.1
Benzo[a]anthracene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg dry wt	0.1	0.3	<0.1	<0.1	<0.1	<0.1
Benzo[b]fluoranthene	mg/kg dry wt	0.1	0.5	<0.1	<0.1	<0.1	<0.1
Benzo[k]fluoranthene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[a]pyrene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo[a,h]anthracene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[g,h,i]perylene	mg/kg dry wt	0.1	0.2	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg dry wt	0.2	0.5	<0.2	<0.2	<0.2	<0.2

	Client Sample ID Date Sampled		BH108 0.85 2/10/2018	BH108 5.6 2/10/2018	BH108 7.8 2/10/2018	BH110 0.4 1/10/2018	BH110 2.5 1/10/2018
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.1	0.3	0.2	0.2	0.2	0.2
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.1	0.1	<0.1	<0.1	<0.1	<0.1
4,4'-DDD	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4,4'-DDE	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4,4'-DDT	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
alpha-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
beta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
gamma-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
delta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Aldrin	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
cis-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
trans-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dieldrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan I	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Endosulfan II	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan sulphate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin aldehyde	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin ketone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor epoxide	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Methoxychlor	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-ethylhexyl) phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Butyl benzyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-butyl phthalate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Di-n-octyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dimethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
N-Nitrosodiphenylamine	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
N-Nitrosodi-n- propylamine	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Azobenzene	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Isophorone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nitrobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Bromophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chlorophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloroethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloro-1- methylethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloroethoxy) methane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,3-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,4-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorobutadiene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorocylopenta diene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachloroethane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloroaniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0

Report ID 18-32437-[R00]

Report Date 19/10/2018

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

	Client	Sample ID	BH108 0.85	BH108 5.6	BH108 7.8	BH110 0.4	BH110 2.5
	Dat	te Sampled	2/10/2018	2/10/2018	2/10/2018	1/10/2018	1/10/2018
2-Nitroaniline	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
3-Nitroaniline	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Aniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
3,3'-Dichlorobenzidine	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenzofuran	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Methyl methanesulfonate	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethyl methanesulfonate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Benzyl alcohol	mg/kg dry wt	1	<1	<1	<1	<1	<1
Phenol-d5 (Surrogate)	%	1	104.0	107.3	91.5	95.6	57.5
2-Fluorophenol (Surrogate)	%	1	109.2	110.5	108.0	115.7	67.4
2-Fluorobiphenyl (Surrogate)	%	1	135.3	110.1	119.0	128.5	158.7
2,4,6-Tribromophenol (Surrogate)	%	1	112.1	154.5	103.8	103.5	107.1
p-Terphenyl-d14 (Surrogate)	%	1	141.2	131.2	128.9	91.9	186.2
Nitrobenzene-d5 (Surrogate)	%	1	146.4	120.3	136.1	143.9	154.5

Semivolatile Organic Compounds - Soil

	Clien	t Sample ID	BH111 1.0	BH111 3.5	BH112 1.0	BH112 9.2	BH113 0.2
	Da	Date Sampled		8/10/2018	5/10/2018	5/10/2018	2/10/2018
Analyte	Unit	Reporting Limit	18-32437-11	18-32437-12	18-32437-14	18-32437-15	18-32437-18
Phenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Chlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Nitrophenol	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,4-Dimethylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloro-3- methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4,5-Trichlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
2,4,6-Trichlorophenol	mg/kg dry wt	5	<5.0	<5.0	<5.0	<5.0	<5.0
2,3,4,6- Tetrachlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
4-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Nitrophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
Naphthalene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Methylnaphthalene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	17.5	<0.1
2-Chloronaphthalene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	1.0	<0.1
Acenaphthylene	mg/kg dry wt	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg dry wt	0.1	2.9	0.3	<0.1	3.3	0.1
Anthracene	mg/kg dry wt	0.1	0.6	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg dry wt	0.1	3.6	0.6	<0.1	<0.1	0.3
Benzo[a]anthracene	mg/kg dry wt	0.1	2.0	0.6	<0.1	<0.1	0.5
Chrysene	mg/kg dry wt	0.1	0.8	0.3	<0.1	<0.1	0.2
Benzo[b]fluoranthene	mg/kg dry wt	0.1	1.4	0.6	<0.1	<0.1	0.5
Benzo[k]fluoranthene	mg/kg dry wt	0.1	0.4	0.2	<0.1	<0.1	0.2
Benzo[a]pyrene	mg/kg dry wt	0.1	1.4	0.8	<0.1	<0.1	0.4

	Client	Sample ID	BH111 1.0	BH111 3.5	BH112 1.0	BH112 9.2	BH113 0.2
	Date Sampled		8/10/2018	8/10/2018	5/10/2018	5/10/2018	2/10/2018
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.1	0.3	0.2	<0.1	<0.1	0.2
Dibenzo[a,h]anthracene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[g,h,i]perylene	mg/kg dry wt	0.1	0.3	0.2	<0.1	<0.1	0.2
Pyrene	mg/kg dry wt	0.2	4.1	0.9	<0.2	<0.2	0.5
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.1	1.9	1.0	0.2	0.2	0.6
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.1	1.8	0.9	<0.1	<0.1	0.5
4,4'-DDD	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4,4'-DDE	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4,4'-DDT	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
alpha-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
beta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
gamma-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
delta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Aldrin	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
cis-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
trans-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dieldrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan I	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Endosulfan II	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan sulphate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin aldehyde	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin ketone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor epoxide	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Methoxychlor	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-ethylhexyl) phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Butyl benzyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-butyl phthalate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Di-n-octyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dimethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
N-Nitrosodiphenylamine	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
N-Nitrosodi-n- propylamine	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Azobenzene	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Isophorone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nitrobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Bromophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chlorophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloroethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloro-1- methylethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloroethoxy) methane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,3-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,4-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
., / Dishioloberizerie	inging ary wi	0.0	~0.0	-0.0	-0.0		

	Client	Sample ID	BH111 1.0	BH111 3.5	BH112 1.0	BH112 9.2	BH113 0.2
	Dat	te Sampled	8/10/2018	8/10/2018	5/10/2018	5/10/2018	2/10/2018
Hexachlorobutadiene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorocylopenta diene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachloroethane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloroaniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Nitroaniline	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
3-Nitroaniline	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Aniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
3,3'-Dichlorobenzidine	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenzofuran	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Methyl methanesulfonate	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethyl methanesulfonate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Benzyl alcohol	mg/kg dry wt	1	<1	<1	<1	<1	<1
Phenol-d5 (Surrogate)	%	1	104.1	95.4	102.1	91.2	96.5
2-Fluorophenol (Surrogate)	%	1	117.5	121.0	128.3	88.4	106.4
2-Fluorobiphenyl (Surrogate)	%	1	118.2	124.0	119.7	74.2	127.1
2,4,6-Tribromophenol (Surrogate)	%	1	118.2	107.7	98.3	90.5	112.4
p-Terphenyl-d14 (Surrogate)	%	1	193.0	186.9	119.6	109.8	178.9
Nitrobenzene-d5 (Surrogate)	%	1	138.9	144.4	141.7	97.5	145.6

Semivolatile Organic Compounds - Soil

	Clien	t Sample ID	BH113 2.5	BH114 0.2	BH114 4.1	BH115 1.6	BH115 6.2
	Da	te Sampled	2/10/2018	3/10/2018	3/10/2018	8/10/2018	8/10/2018
Analyte	Unit	Reporting Limit	18-32437-19	18-32437-21	18-32437-22	18-32437-25	18-32437-26
Phenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Chlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Nitrophenol	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,4-Dimethylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloro-3- methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4,5-Trichlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
2,4,6-Trichlorophenol	mg/kg dry wt	5	<5.0	<5.0	<5.0	<5.0	<5.0
2,3,4,6- Tetrachlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
4-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Nitrophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
Naphthalene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Methylnaphthalene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-Chloronaphthalene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg dry wt	0.1	0.3	0.1	<0.1	0.3	<0.1
Anthracene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg dry wt	0.1	0.4	0.2	<0.1	0.6	<0.1

	Client	Sample ID	BH113 2.5	BH114 0.2	BH114 4.1	BH115 1.6	BH115 6.2
	Da	te Sampled	2/10/2018	3/10/2018	3/10/2018	8/10/2018	8/10/2018
Benzo[a]anthracene	mg/kg dry wt	0.1	0.5	0.2	<0.1	0.6	<0.1
Chrysene	mg/kg dry wt	0.1	0.2	0.2	<0.1	0.3	<0.1
Benzo[b]fluoranthene	mg/kg dry wt	0.1	0.4	0.4	<0.1	0.4	<0.1
Benzo[k]fluoranthene	mg/kg dry wt	0.1	0.2	0.1	<0.1	0.2	<0.1
Benzo[a]pyrene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	0.4	<0.1
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo[a,h]anthracene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo[g,h,i]perylene	mg/kg dry wt	0.1	0.1	<0.1	<0.1	0.2	<0.1
Pyrene	mg/kg dry wt	0.2	0.5	0.3	<0.2	0.9	<0.2
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.1	0.3	0.3	0.2	0.7	0.2
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.1	0.1	0.1	<0.1	0.6	<0.1
4,4'-DDD	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4,4'-DDE	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4,4'-DDT	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
alpha-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
beta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
gamma-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
delta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Aldrin	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
cis-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
trans-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dieldrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan I	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Endosulfan II	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan sulphate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin aldehyde	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin ketone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor		0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor epoxide	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Methoxychlor	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-ethylhexyl) phthalate	mg/kg dry wt mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
•	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Butyl benzyl phthalate Di-n-butyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-octyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethyl phthalate	mg/kg dry wt	0.3	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethyl phthalate N-Nitrosodiphenylamine	mg/kg dry wt	0.3 0.3	<0.3	<0.3	<0.3	<0.3	<0.3
N-Nitrosodi-n- propylamine	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Azobenzene	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Isophorone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nitrobenzene		0.3	<0.5	<0.5	<0.5	<0.5	<0.5
A-Bromophenyl phenyl ether	mg/kg dry wt mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chlorophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloroethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloro-1- methylethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

	Client	Sample ID	BH113 2.5	BH114 0.2	BH114 4.1	BH115 1.6	BH115 6.2
	Dat	e Sampled	2/10/2018	3/10/2018	3/10/2018	8/10/2018	8/10/2018
Bis(2-Chloroethoxy) methane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,3-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,4-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorobutadiene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorocylopenta diene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachloroethane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloroaniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Nitroaniline	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
3-Nitroaniline	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Aniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
3,3'-Dichlorobenzidine	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenzofuran	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Methyl methanesulfonate	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethyl methanesulfonate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Benzyl alcohol	mg/kg dry wt	1	<1	<1	<1	<1	<1
Phenol-d5 (Surrogate)	%	1	104.9	89.7	98.0	100.0	101.1
2-Fluorophenol (Surrogate)	%	1	120.1	109.3	101.4	108.9	116.4
2-Fluorobiphenyl (Surrogate)	%	1	120.1	129.3	99.1	118.4	117.1
2,4,6-Tribromophenol (Surrogate)	%	1	104.2	95.9	100.1	101.9	94.2
p-Terphenyl-d14 (Surrogate)	%	1	175.0	115.9	138.8	191.1	110.8
Nitrobenzene-d5 (Surrogate)	%	1	135.2	149.9	126.0	137.4	139.7

Semivolatile Organic Compounds - Soil

	Clien	t Sample ID	BH116 0.7	BH116 5.6	BH117 0.5	BH117 2.4	BH118 0.75
	Da	te Sampled	8/10/2018	8/10/2018	9/10/2018	9/10/2018	9/10/2018
Analyte	Unit	Reporting Limit	18-32437-27	18-32437-28	18-32437-30	18-32437-31	18-32437-34
Phenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Chlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Nitrophenol	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,4-Dimethylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloro-3- methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4,5-Trichlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
2,4,6-Trichlorophenol	mg/kg dry wt	5	<5.0	<5.0	<5.0	<5.0	<5.0
2,3,4,6- Tetrachlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
4-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Nitrophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
Naphthalene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	0.1
2-Methylnaphthalene	mg/kg dry wt	0.1	<0.1	0.2	<0.1	<0.1	0.1
2-Chloronaphthalene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	0.3
Acenaphthylene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Report ID 18-32437-[R00]

Report Date 19/10/2018

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

	Client	Sample ID	BH116 0.7	BH116 5.6	BH117 0.5	BH117 2.4	BH118 0.75
	Da	te Sampled	8/10/2018	8/10/2018	9/10/2018	9/10/2018	9/10/2018
Fluorene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	0.2	0.3
Phenanthrene	mg/kg dry wt	0.1	0.7	0.4	<0.1	0.6	5.3
Anthracene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	<0.1	0.9
Fluoranthene	mg/kg dry wt	0.1	1.3	0.9	<0.1	1.7	6.9
Benzo[a]anthracene	mg/kg dry wt	0.1	1.1	0.7	<0.1	1.2	3.7
Chrysene	mg/kg dry wt	0.1	0.7	0.4	<0.1	0.6	1.2
Benzo[b]fluoranthene	mg/kg dry wt	0.1	0.9	0.9	<0.1	1.3	2.3
Benzo[k]fluoranthene	mg/kg dry wt	0.1	0.3	0.4	0.1	0.4	0.7
Benzo[a]pyrene	mg/kg dry wt	0.1	0.9	0.9	<0.1	1.2	2.4
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.1	<0.1	<0.1	<0.1	0.3	0.6
		0.1	<0.1	<0.1	<0.1	<0.1	<0.0
Dibenzo[a,h]anthracene	mg/kg dry wt		-	-	-		
Benzo[g,h,i]perylene	mg/kg dry wt	0.1	0.2	0.2	<0.1	0.3	0.5
Pyrene	mg/kg dry wt	0.2	1.7	1.1	<0.2	1.8	7.6
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.1	1.3	1.2	0.2	1.7	3.3
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.1	1.2	1.1	<0.1	1.6	3.2
4,4'-DDD	mg/kg dry wt	0.3	<0.3	1.5	<0.3	0.5	<0.3
4,4'-DDE	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4,4'-DDT	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
alpha-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
beta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
gamma-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
delta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Aldrin	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
cis-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
trans-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dieldrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan I	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Endosulfan II	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan sulphate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	0 0 ,						
Endrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin aldehyde	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin ketone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor epoxide	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Methoxychlor	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-ethylhexyl) phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Butyl benzyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-butyl phthalate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Di-n-octyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dimethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
N-Nitrosodiphenylamine	mg/kg dry wt	0.3	<0.3	0.5	<0.3	<0.3	<0.3
N-Nitrosodi-n- propylamine	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
							<0.3
2,6-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	
Azobenzene	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Isophorone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nitrobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Bromophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3

	Client	Sample ID	BH116 0.7	BH116 5.6	BH117 0.5	BH117 2.4	BH118 0.75
	Da	te Sampled	8/10/2018	8/10/2018	9/10/2018	9/10/2018	9/10/2018
4-Chlorophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloroethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloro-1- methylethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloroethoxy) methane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,3-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,4-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorobutadiene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorocylopenta diene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Hexachloroethane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloroaniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Nitroaniline	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
3-Nitroaniline	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Aniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
3,3'-Dichlorobenzidine	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenzofuran	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Methyl methanesulfonate	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethyl methanesulfonate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Benzyl alcohol	mg/kg dry wt	1	<1	<1	<1	<1	<1
Phenol-d5 (Surrogate)	%	1	97.5	90.2	111.0	87.9	95.2
2-Fluorophenol (Surrogate)	%	1	106.1	88.1	154.7	100.4	121.4
2-Fluorobiphenyl (Surrogate)	%	1	121.5	89.4	124.5	111.3	106.5
2,4,6-Tribromophenol (Surrogate)	%	1	105.0	141.3	104.8	119.9	102.8
p-Terphenyl-d14 (Surrogate)	%	1	160.2	134.1	104.4	135.9	212.3
Nitrobenzene-d5 (Surrogate)	%	1	148.2	135.7	132.3	108.1	130.1

Semivolatile Organic Compounds - Soil

	Client Sample ID		BH118 6.3	BH119 1.0	BH119 6.3	BH120 0.8	BH120 3.8
	Da	te Sampled	9/10/2018	10/10/2018	10/10/2018	9/10/2018	9/10/2018
Analyte	Unit	Reporting Limit	18-32437-35	18-32437-37	18-32437-38	18-32437-39	18-32437-40
Phenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Chlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2-Nitrophenol	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,4-Dimethylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dichlorophenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloro-3- methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4,5-Trichlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
2,4,6-Trichlorophenol	mg/kg dry wt	5	<5.0	<5.0	<5.0	<5.0	<5.0
2,3,4,6- Tetrachlorophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5
4-Methylphenol	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Nitrophenol	mg/kg dry wt	5	<5	<5	<5	<5	<5

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

	Client	Sample ID	BH118 6.3	BH119 1.0	BH119 6.3	BH120 0.8	BH120 3.8
	Da	te Sampled	9/10/2018	10/10/2018	10/10/2018	9/10/2018	9/10/2018
Naphthalene	mg/kg dry wt	0.1	<0.1	<0.1	8.2	3.9	0.3
2-Methylnaphthalene	mg/kg dry wt	0.1	0.1	<0.1	7.2	2.6	<0.1
2-Chloronaphthalene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Acenaphthene	mg/kg dry wt	0.1	0.2	<0.1	2.4	1.3	0.1
Acenaphthylene	mg/kg dry wt	0.1	<0.1	<0.1	2.1	6.4	<0.1
Fluorene	mg/kg dry wt	0.1	0.3	<0.1	15.5	7.9	0.3
Phenanthrene	mg/kg dry wt	0.1	0.7	<0.1	101.7	169.1	1.3
Anthracene	mg/kg dry wt	0.1	<0.1	<0.1	10.2	111.4	0.4
Fluoranthene	mg/kg dry wt	0.1	1.1	0.1	77.2	266.5	2.0
Benzo[a]anthracene	mg/kg dry wt	0.1	0.5	0.2	15.3	137.5	1.1
Chrysene	mg/kg dry wt	0.1	0.3	<0.1	12.4	86.3	0.5
Benzo[b]fluoranthene	mg/kg dry wt	0.1	0.5	<0.1	14.2	93.6	1.0
Benzo[k]fluoranthene	mg/kg dry wt	0.1	0.2	<0.1	7.2	41.0	0.4
Benzo[a]pyrene	mg/kg dry wt	0.1	0.5	<0.1	14.9	90.3	1.0
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.1	0.1	<0.1	4.6	12.4	0.2
Dibenzo[a,h]anthracene	mg/kg dry wt	0.1	<0.1	<0.1	0.9	4.8	<0.1
Benzo[g,h,i]perylene	mg/kg dry wt	0.1	<0.1	<0.1	2.9	8.9	<0.1
Pyrene	mg/kg dry wt	0.2	1.2	0.2	83.5	183.4	2.1
Benzo[a]pyrene TEQ (LOR)	mg/kg dry wt	0.1	0.8	0.3	20.9	127.0	1.4
Benzo[a]pyrene TEQ (Zero)	mg/kg dry wt	0.1	0.7	<0.1	20.9	127.0	1.3
4,4'-DDD	mg/kg dry wt	0.3	8.3	<0.3	<0.3	<0.3	<0.3
4,4'-DDE	mg/kg dry wt	0.3	0.5	<0.3	<0.3	<0.3	<0.3
4,4'-DDT	mg/kg dry wt	0.5	0.6	<0.5	<0.5	<0.5	<0.5
alpha-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
peta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
gamma-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
delta-BHC	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Aldrin	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
cis-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
trans-Chlordane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dieldrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan I	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Endosulfan II	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endosulfan sulphate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin aldehyde	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Endrin ketone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Hexachlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Heptachlor epoxide	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Methoxychlor	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-ethylhexyl)	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Butyl benzyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Di-n-butyl phthalate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Di-n-octyl phthalate	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Dimethyl phthalate	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
N-Nitrosodiphenylamine	mg/kg dry wt	0.3	0.7	<0.3	<0.3	<0.3	<0.3
N-Nitrosodi-n-							
oropylamine	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,4-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
2,6-Dinitrotoluene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3

	Client	Sample ID	BH118 6.3	BH119 1.0	BH119 6.3	BH120 0.8	BH120 3.8
	Da	te Sampled	9/10/2018	10/10/2018	10/10/2018	9/10/2018	9/10/2018
Azobenzene	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Isophorone	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nitrobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Bromophenyl phenyl ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chlorophenyl phenyl ether	ther 0.3		<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloroethyl) ether	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Bis(2-Chloro-1- methylethyl) ether	er mg/kg dry wt 0.3		<0.3	<0.3	<0.3	<0.3	<0.3
bis(2-Chloroethoxy) mg/kg dry wt 0.3		0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,2-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,3-Dichlorobenzene	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
1,4-Dichlorobenzene	mg/kg dry wt 0.3		<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorobutadiene	mg/kg dry wt 0.3		<0.3	<0.3	<0.3	<0.3	<0.3
Hexachlorocylopenta diene	kachlorocylopenta ma/ka dry wt 0.3		<0.3	<0.3	<0.3	<0.3	<0.3
Hexachloroethane	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
4-Chloroaniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Nitroaniline	mg/kg dry wt	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
3-Nitroaniline	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Aniline	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
3,3'-Dichlorobenzidine	mg/kg dry wt	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenzofuran	mg/kg dry wt	0.3	<0.3	<0.3	11.2	4.6	<0.3
Methyl methanesulfonate	mg/kg dry wt	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethyl methanesulfonate	mg/kg dry wt	1	<1	<1	<1	<1	<1
Benzyl alcohol	mg/kg dry wt	1	<1	<1	<1	<1	<1
Phenol-d5 (Surrogate)	%	1	86.4	90.7	82.9	120.0	124.8
2-Fluorophenol (Surrogate)	%	1	100.1	99.5	107.5	155.8	142.0
2-Fluorobiphenyl (Surrogate)	%	1	123.1	113.4	82.5	72.9	98.8
2,4,6-Tribromophenol (Surrogate)			116.2	99.0	136.2	136.5	117.2
p-Terphenyl-d14 (Surrogate)	%	1	173.7	242.4	117.9	122.3	115.9
Nitrobenzene-d5 (Surrogate)	%	1	135.4	133.1	112.8	107.5	94.1

Moisture Content

Clier	nt Sample ID	BH108 0.85	BH108 5.6	BH108 7.8	BH110 0.4	BH110 2.5
D	ate Sampled	2/10/2018	2/10/2018	2/10/2018	1/10/2018	1/10/2018
Analyte Unit	Unit Reporting Limit		18-32437-2	18-32437-3	18-32437-5	18-32437-6
Moisture Content %	1	20	13	14	11	68

Moisture Content

	Clien	t Sample ID	BH111 1.0	BH111 3.5	BH112 1.0	BH112 9.2	BH113 0.2
	Da	te Sampled	8/10/2018	8/10/2018	5/10/2018	5/10/2018	2/10/2018
Analyte Unit Reporting Limit			18-32437-11	18-32437-12	18-32437-14	18-32437-15	18-32437-18
Moisture Content	1	13	21	16	9	14	

Moisture Content

	Clien	t Sample ID	BH113 2.5	BH114 0.2	BH114 4.1	BH114 15.0	BH115 1.6
	Da	te Sampled	2/10/2018	3/10/2018	3/10/2018	3/10/2018	8/10/2018
Analyte	nalyte Unit Reporting Limit			18-32437-21	18-32437-22	18-32437-24	18-32437-25
Moisture Content	1	16	11	10	12	17	

Moisture Content

CI	ent Sample ID	BH115 6.2	BH116 0.7	BH116 5.6	BH117 0.5	BH117 2.4
	Date Sampled	8/10/2018	8/10/2018	8/10/2018	9/10/2018	9/10/2018
Analyte U	Unit Reporting Limit		18-32437-27	18-32437-28	18-32437-30	18-32437-31
Moisture Content	6 1	5	5	59	14	23

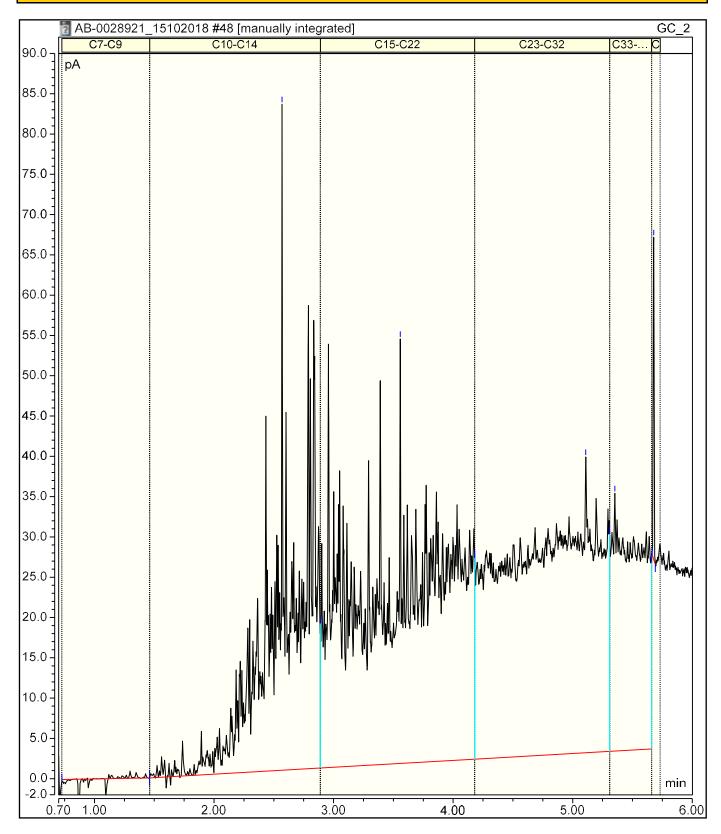
Moisture Content

Cli	ent Sample ID	BH118 0.75	BH118 6.3	BH119 1.0	BH119 6.3	BH120 0.8
	Date Sampled	9/10/2018	9/10/2018	10/10/2018	10/10/2018	9/10/2018
Analyte Ur	Unit Reporting Limit		18-32437-35	18-32437-37	18-32437-38	18-32437-39
Moisture Content	6 1	13	41	21	17	13

Moisture Content

	Client	BH120 3.8	
	Da	te Sampled	9/10/2018
Analyte	Unit	Reporting Limit	18-32437-40
Moisture Content	%	1	16

Method Summary


Elements in Soil	Acid digestion followed by ICP-MS analysis. (US EPA method 200.8).
TPH in Soil	Solvent extraction, silica cleanup, followed by GC-FID analysis. (C7-C36)
SVOC in Soil	Solvent extraction, followed by GC-MS analysis.(In-house based on US EPA 8270).
Moisture	Moisture content is determined gravimetrically by drying at 103 °C.

Seatontry

Sharelle Frank, B.Sc. (Tech) Technologist

Tom Featonby, M.Sc. Technologist

Chromatogram 18-32437-15

PRECISE CONSULTING & LABORATORY

Report Date: 03 Oct 2018

Certificate Number: S1809281149

Analytica Laboratories Ruakura Research Centre, 10 Bisley Road, Private Bag 3123,

Client Reference: 1003207

Dear Rachael Casey,

Re: Asbestos Soil Identification Analysis – 1003207

10 sample(s) received on 28 Sep 2018 by Victoria Sheppard.

The results of fibre analysis were performed by Nick Wells of Precise Consulting and Laboratory Ltd on 03 Oct 2018.

The sample(s) were stated to be from 1003207.

Sample analysis was performed using polarised light microscopy with dispersion staining in accordance with AS4964-2004 Method for the qualitative identification of asbestos in soil samples.

The results of the fibre analysis are presented in the appended table.

Should you require further information please contact Nick Wells.

Yours sincerely

1A)

Nick Wells PRECISE LABORATORY IDENTIFIER

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

S1809281149 - **1** of 5

Sample Analysis Results

Certificate Number: S1809281149 Report Date: 03 Oct 2018 Site Location: 1003207

Note 1: The reporting limit for this analysis is 0.1g/kg (0.01%) by application of polarised light microscopy, dispersion staining and trace analysis techniques.

Note 2: If mineral fibres of unknown type are detected (UMF), by PLM and dispersion staining, these may or may not be asbestos fibres. To confirm the identity of this fibre, another independent analytical technique such as XRD analysis is advised.

Note 3: The samples in this report are "As Received". The laboratory does not take responsibility for the sampling procedure or accuracy of sample location description. This document may not be reproduced except in full.

Identified by:

Approved Identifier: Nick Wells

Reviewed by:

Key Technical Person: Nick Wells

Sample ID	Client Sample ID	Sample Location/Description/Dimensions	Analysis Results
S001	BH101 3.5	BH101 3.5 Non-Homogeneous Soil 720.63g	No Asbestos Detected Organic Fibres Synthetic Mineral Fibres
S002	BH101 7.35	BH101 7.35 Non-Homogeneous Soil 315.43g	Chrysotile (white asbestos) Fibres Organic Fibres Amosite (brown asbestos) Fibres Synthetic Mineral Fibres Crocidolite (blue asbestos) Fibres
S003	BH102 2.0	BH102 2.0 Non-Homogeneous Soil 538.80g	No Asbestos Detected Organic Fibres
S004	BH102 9.8	BH102 9.8 Non-Homogeneous Soil 297.26g	No Asbestos Detected Organic Fibres
S005	BH103 7.15	BH103 7.15 Non-Homogeneous Soil 669.61g	Chrysotile (white asbestos) Fibres Organic Fibres
S006	BH103 10.2	BH103 10.2 Non-Homogeneous Soil 380.24g	Chrysotile (white asbestos) Fibres Organic Fibres Amosite (brown asbestos) Fibres Crocidolite (blue asbestos) Fibres

Issue Date: Jun 2017 | Version 10 Precise Consulting & Laboratory Limited Unit 4, 91 Byron Street, Sydenham, Christchurch 8023

\$1809281149 - 2 of 5

Sample Analysis Results

Certificate Number: S1809281149 Report Date: 03 Oct 2018 Site Location: 1003207

Γ

Sample ID	Client Sample ID	Sample Location/Description/Dimensions	Analysis Results
S007	BH104 1.1	BH104 1.1 Non-Homogeneous Soil 643.96g	Chrysotile (white asbestos) Fibres Organic Fibres
S008	BH104 5.5	BH104 5.5 Non-Homogeneous Soil 139.90g	No Asbestos Detected Organic Fibres
S009	BH105 2.2	BH105 2.2 Non-Homogeneous Soil 569.05g	No Asbestos Detected Organic Fibres
S010	BH105 5.1	BH105 5.1 Non-Homogeneous Soil 193.36g	Chrysotile (white asbestos) Fibres Organic Fibres

Issue Date: Jun 2017 | Version 10 Precise Consulting & Laboratory Limited Unit 4, 91 Byron Street, Sydenham, Christchurch 8023

Appendix 1: Soil Analysis Raw Data

PRECISE CONSULTING & LABORATORY

Certificate Number: S1809281149 Report Date: 03 Oct 2018 Site Location: 1003207

	Quantitative Results (non IANZ)																	
Sample	Client	Total 500mL		ACM (>1	L0mm)*		AF / F	A (2-10m	m) (100% A	CM)*	AF / FA (<2mm) (100% ACM)*				<2mm	Trace Asbestos	W/W% Asbesto	W/W% Asbestos
ID	Sample ID	Sub- Sample (g)	>10mm Weight (g)	>10mm ACM (g)	ACM Form	Form %***	2-10mm Weight (g)	2-10mm AF/FA (g)	ACM Form	Form %***	<2mm Weight (g)	<2mm AF/FA (g)	ACM Form	Form %***	Excess (g)	Detected **	s as ACM	as AF / FA
S001	BH101 3.5	720.63	210.65	No Asbestos Detected	N/A	N/A	284.87	No Asbestos Detected		N/A	100.54	No Asbestos Detected	N/A	N/A	124.57	No	<0.001	<0.001
S002	BH101 7.35	315.43	45.01	No Asbestos Detected	N/A	N/A	167.06	0.018	Insulation Board	70%	102.08	0.001	Free Fibres	100%	1.28	Yes	<0.001	0.0043
S003	BH102 2.0	538.80	174.57	No Asbestos Detected	N/A	N/A	178.04	No Asbestos Detected		N/A	101.13	No Asbestos Detected	N/A	N/A	85.06	No	<0.001	<0.001
S004	BH102 9.8	297.26	59.10	No Asbestos Detected	N/A	N/A	123.55	No Asbestos Detected	,	N/A	100.63	No Asbestos Detected	N/A	N/A	13.98	No	<0.001	<0.001
S005	BH103 7.15	669.61	178.59	No Asbestos Detected	N/A	N/A	206.98	0.020	Free Fibres	100%	100.56	0.003	Free Fibres	100%	183.48	Yes	<0.001	0.0043
S006	BH103 10.2	380.24	125.32	16.128	Cement Sheet	20%	114.11	0.240	Cement Sheet	20%	100.08	0.002	Free Fibres	100%	40.73	Yes	0.848	0.0134
S007	BH104 1.1	643.96	136.85	No Asbestos Detected	N/A	N/A	143.99	No Asbestos Detected	N/A	N/A	100.13	0.001	Free Fibres	100%	262.99	Yes	<0.001	<0.001
S008	BH104 5.5	139.90	108.86	No Asbestos Detected	N/A	N/A	14.87	No Asbestos Detected		N/A	16.17	No Asbestos Detected	N/A	N/A	No Excess	No	<0.001	<0.001
S009	BH105 2.2	569.05	253.88	No Asbestos Detected	N/A	N/A	190.01	No Asbestos Detected		N/A	100.23	No Asbestos Detected	N/A	N/A	24.93	No	<0.001	<0.001

Appendix 1: Soil Analysis Raw Data

PRECISE CONSULTING & LABORATORY

Certificate Number: S1809281149 Report Date: 03 Oct 2018 Site Location: 1003207

	Quantitative Results (non IANZ)																				
Commis	Client	Total 500mL	ACM (>10mm)*			AF / F	AF / FA (2-10mm) (100% ACM)*			AF / I	FA (<2mm	ו) (100% ACI	M)*	<2mm	Trace	W/W% Asbesto	W/W% Asbestos				
ID	Sample Sample	Sample	Sample	Sample		>10mm Weight (g)	1 > 10 mm	ACM Form	Form %***	2-10mm Weight (g)	-	ACM Form	Form %***	<2mm Weight (g)	<2mm AF/FA (g)	ACM Form	Form %***	Excess (g)	Asbestos Detected **	s as ACM	as AF / FA
S010	BH105 5.1	193.36	14.89	No Asbestos Detected	N/A	N/A		No Asbestos Detected		N/A	95.76	0.001	Free Fibres	100%	No Excess	Yes	<0.001	<0.001			

* These results are raw weighed data presented as per the BRANZ New Zealand Guidelines for Assessing and Managing Asbestos Soil and may be under the reporting limit for guidelines AS4964 of 0.1g/kg

** Trace asbestos detected is indicative that freely liberated respirable fibres are present and dust control measures should be implemented or increased on site. This is not the sole indicator for the friable nature of the asbestos present.

*** Asbestos percentage is determined using EPA-600-R-93-116: Method for the Determination of Asbestos in Bulk Building Materials and are outside of IANZ accreditation #1097 and is therefore not endorsed by IANZ.

PRECISE CONSULTING & LABORATORY

Report Date: 08 Oct 2018

Certificate Number: S1810011340

Analytica Laboratories Ruakura Research Centre, 10 Bisley Road, Private Bag 3123,

Client Reference: 1003207

Dear Rachael Casey,

Re: Asbestos Soil Identification Analysis – 1003207

6 sample(s) received on 01 Oct 2018 by Victoria Sheppard.

The results of fibre analysis were performed by Nick Wells of Precise Consulting and Laboratory Ltd on 08 Oct 2018.

The sample(s) were stated to be from 1003207.

Sample analysis was performed using polarised light microscopy with dispersion staining in accordance with AS4964-2004 Method for the qualitative identification of asbestos in soil samples.

The results of the fibre analysis are presented in the appended table.

Should you require further information please contact Nick Wells.

Yours sincerely

1A)

Nick Wells PRECISE LABORATORY IDENTIFIER

S1810011340 - **1** of 3

Sample Analysis Results

Certificate Number: S1810011340 Report Date: 08 Oct 2018 Site Location: 1003207

Note 1: The reporting limit for this analysis is 0.1g/kg (0.01%) by application of polarised light microscopy, dispersion staining and trace analysis techniques.

Note 2: If mineral fibres of unknown type are detected (UMF), by PLM and dispersion staining, these may or may not be asbestos fibres. To confirm the identity of this fibre, another independent analytical technique such as XRD analysis is advised.

Note 3: The samples in this report are "As Received". The laboratory does not take responsibility for the sampling procedure or accuracy of sample location description. This document may not be reproduced except in full.

Identified by:

Approved Identifier: Nick Wells

Reviewed by:

Key Technical Person: Nick Wells

Sample ID	Client Sample ID	Sample Location/Description/Dimensions	Analysis Results
S001	BH106 0.5	BH106 0.5 Non-Homogeneous Soil 547.86g	No Asbestos Detected Organic Fibres
S002	BH106 6.3	BH106 6.3 Non-Homogeneous Soil 42.69g	No Asbestos Detected Organic Fibres
S003	BH107 2.3	BH107 2.3 Non-Homogeneous Soil 540.11g	Chrysotile (white asbestos) Fibres Organic Fibres
S004	BH107 4.6	BH107 4.6 Non-Homogeneous Soil 407.95g	Chrysotile (white asbestos) Fibres Organic Fibres Synthetic Mineral Fibres
S005	BH109 1.3	BH109 1.3 Non-Homogeneous Soil 577.96g	No Asbestos Detected Organic Fibres
S006	BH109 5.4	BH109 5.4 Non-Homogeneous Soil 619.75g	No Asbestos Detected Organic Fibres

Issue Date: Jun 2017 | Version 10 Precise Consulting & Laboratory Limited Unit 4, 91 Byron Street, Sydenham, Christchurch 8023

Appendix 1: Soil Analysis Raw Data

PRECISE CONSULTING & LABORATORY

Certificate Number: S1810011340 Report Date: 08 Oct 2018 Site Location: 1003207

								-	ntitative Resu (non IANZ)	llts								
	Client	Total		ACM (>	10mm)*		AF /	FA (2-10mr	n) (100% ACN	1)*	AF /	FA (<2mm)	(100% ACM)*	<2mm	Trace Asbestos	W/W% Asbestos as	W/W% Asbestos
Sample ID	Sample ID	500mL Sub- Sample (g)	>10mm >10mm ACM Form Form 2-10mm AF/FA Weight (g) No No No No						ACM Form	Form %***	<2mm Weight (g)	<2mm AF/FA (g)	ACM Form	Form %***	Excess (g)	Detected **	ACM	as AF / FA
S001	BH106 0.5	547.86	No Material Present	N/A	N/A			No Asbestos Detected	N/A	N/A	101.37	No Asbestos Detected	N/A	N/A	303.42	No	<0.001	<0.001
S002	BH106 6.3	42.69	No Material Present	N/A	N/A	N/A		No Asbestos Detected	N/A	N/A	39.41	No Asbestos Detected	N/A	N/A	No Material Present	No	<0.001	<0.001
S003	BH107 2.3	540.11	210.33	No Asbestos Detected	N/A	N/A	215.42	0.085	Bitumastic Material	40%	100.74	0.002	Free Fibres	100%	13.62	Yes	<0.001	0.0067
S004	BH107 4.6	407.95	No Material Present	N/A	N/A	N/A	144.19	0.429	Cement Sheet	20%	102.81	0.004	Free Fibres	100%	160.95	Yes	<0.001	0.0235
\$005	BH109 1.3	577.96	27.81	No Asbestos Detected	N/A	N/A		No Asbestos Detected	N/A	N/A	100.63	No Asbestos Detected	N/A	N/A	351.12	No	<0.001	<0.001
S006	BH109 5.4	619.75	139.91	No Asbestos Detected	'	N/A		No Asbestos Detected	N/A	N/A	100.95	No Asbestos Detected	N/A	N/A	147.76	No	<0.001	<0.001

* These results are raw weighed data presented as per the BRANZ New Zealand Guidelines for Assessing and Managing Asbestos Soil and may be under the reporting limit for guidelines AS4964 of 0.1g/kg

** Trace asbestos detected is indicative that freely liberated respirable fibres are present and dust control measures should be implemented or increased on site. This is not the sole indicator for the friable nature of the asbestos present.

*** Asbestos percentage is determined using EPA-600-R-93-116: Method for the Determination of Asbestos in Bulk Building Materials and are outside of IANZ accreditation #1097 and is therefore not endorsed by IANZ.

PRECISE CONSULTING & LABORATORY

Report Date: 19 Oct 2018

Certificate Number: S1810151050

Analytica Laboratories Ruakura Research Centre, 10 Bisley Road, Private Bag 3123

Client Reference: Kyle Park / 1003207 / 18-32437

Dear Analytica Laboratories,

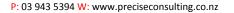
Re: Asbestos Soil Identification Analysis – Kyle Park / 1003207

14 sample(s) received on 15 Oct 2018 by Victoria Sheppard.

The results of fibre analysis were performed by Nick Wells of Precise Consulting and Laboratory Ltd on 19 Oct 2018.

The sample(s) were stated to be from Kyle Park / 1003207.

Sample analysis was performed using polarised light microscopy with dispersion staining in accordance with AS4964-2004 Method for the qualitative identification of asbestos in soil samples.


The results of the fibre analysis are presented in the appended table.

Should you require further information please contact Nick Wells.

Yours sincerely

1A)

Nick Wells PRECISE LABORATORY IDENTIFIER

S1810151050 - **1** of 5

Sample Analysis Results

Certificate Number: S1810151050 Report Date: 19 Oct 2018 Site Location: Kyle Park / 1003207

Note 1: The reporting limit for this analysis is 0.1g/kg (0.01%) by application of polarised light microscopy, dispersion staining and trace analysis techniques.

Note 2: If mineral fibres of unknown type are detected (UMF), by PLM and dispersion staining, these may or may not be asbestos fibres. To confirm the identity of this fibre, another independent analytical technique such as XRD analysis is advised.

Note 3: The samples in this report are "As Received". The laboratory does not take responsibility for the sampling procedure or accuracy of sample location description. This document may not be reproduced except in full.

Identified by:

Approved Identifier: Nick Wells

Reviewed by:

Key Technical Person: Nick Wells

Sample ID	Client Sample ID	Sample Location/Description/Dimensions	Analysis Results
S001	BH108 2.35	BH108 2.35 Non-Homogeneous Soil 735.58g	Chrysotile (white asbestos) Fibres Organic Fibres Amosite (brown asbestos) Fibres Crocidolite (blue asbestos) Fibres
S002	BH117 2.4	BH117 2.4 Non-Homogeneous Soil 529.97g	No Asbestos Detected Organic Fibres
S003	BH110 0.6	BH110 0.6 Non-Homogeneous Soil 767.76g	Chrysotile (white asbestos) Fibres Organic Fibres Amosite (brown asbestos) Fibres Crocidolite (blue asbestos) Fibres
S004	BH111 0.5	BH111 0.5 Non-Homogeneous Soil 847.42g	Chrysotile (white asbestos) Fibres Organic Fibres Amosite (brown asbestos) Fibres Crocidolite (blue asbestos) Fibres
S005	BH111 1.95	Chrysotile (white asbestos) Fibres Organic Fibres Amosite (brown asbestos) Fibres Crocidolite (blue asbestos) Fibres	
S006	BH112 0.5	BH112 0.5 Non-Homogeneous Soil 1032.32g	No Asbestos Detected Organic Fibres

Sample Analysis Results

Certificate Number: S1810151050 Report Date: 19 Oct 2018 Site Location: Kyle Park / 1003207

Г

Sample ID	Client Sample ID	Sample Location/Description/Dimensions	Analysis Results
S007	BH113 2.8	BH113 2.8 Non-Homogeneous Soil 363.91g	Chrysotile (white asbestos) Fibres Organic Fibres Amosite (brown asbestos) Fibres Synthetic Mineral Fibres
S008	BH114 0.1	BH114 0.1 Non-Homogeneous Soil 783.91g	No Asbestos Detected Organic Fibres
S009	783.91g 09 BH115 0.1 09 BH115 0.1 09 BH115 0.1 10 BH116 3.2 10 BH116 3.2 10 BH116 3.2	No Asbestos Detected Organic Fibres	
S010	BH116 3.2	Non-Homogeneous Soil	No Asbestos Detected Organic Fibres
S011	BH118 0.3	BH118 0.3 Non-Homogeneous Soil 548.18g	No Asbestos Detected Organic Fibres
S012	BH118 2.6	BH118 2.6 Non-Homogeneous Soil 876.55g	Chrysotile (white asbestos) Fibres Organic Fibres Synthetic Mineral Fibres
S013	BH119 1.1	BH119 1.1 Non-Homogeneous Soil 837.21g	Chrysotile (white asbestos) Fibres Organic Fibres Amosite (brown asbestos) Fibres Crocidolite (blue asbestos) Fibres
S014	BH120 2.0	BH120 2.0 Non-Homogeneous Soil 700.56g	Chrysotile (white asbestos) Fibres Organic Fibres Amosite (brown asbestos) Fibres Crocidolite (blue asbestos) Fibres

Appendix 1: Soil Analysis Raw Data

PRECISE CONSULTING & LABORATORY

Certificate Number: S1810151050 Report Date: 19 Oct 2018 Site Location: Kyle Park / 1003207

								Qua	intitative Resu (non IANZ)	ılts								
	Client	Total		ACM (>	10mm)*		AF /	FA (2-10mr	m) (100% ACN	1)*	AF ,	/ FA (<2mm	(100% ACM) [*]	*	<2mm	Trace Asbestos	W/W% Asbestos as	W/W% Asbestos
Sample ID	Sample ID	500mL Sub- Sample (g)	>10mm Weight (g)	>10mm ACM (g)	ACM Form	Form %***	2-10mm Weight (g)	2-10mm AF/FA (g)	ACM Form	Form %***	<2mm Weight (g)	<2mm AF/FA (g)	ACM Form	Form %***	Excess (g)	Detected **	ACM	as AF / FA
S001	BH108 2.35	735.58	276.35	126.421	Cement Sheet	20%	271.80	245.018	Cement Sheet	20%	102.87	0.305	Free Fibres	100%	84.56	Yes	3.437	6.7374
S002	BH117 2.4	529.97	102.53	No Asbestos Detected	N/A	N/A	166.32	No Asbestos Detected	N/A	N/A	102.49	No Asbestos Detected	N/A	N/A	158.63	No	<0.001	<0.001
S003	BH110 0.6	767.76	56.91	No Asbestos Detected	N/A	N/A	349.92	0.035	Free Fibres	100%	101.35	0.005	Free Fibres	100%	259.58	Yes	<0.001	0.0069
S004	BH111 0.5	847.42	163.01	4.284	Cement Sheet	20%	341.58	2.229	Cement Sheet	20%	102.31	0.045	Free Fibres	100%	240.52	Yes	0.101	0.0704
S005	BH111 1.95	802.58	526.13	120.020	Cement Sheet	20%	203.86	9.091	Cement Sheet	20%	72.59	0.205	Cement Sheet	20%	No Excess Present	Yes	2.991	0.2317
S006	BH112 0.5	1032.32	543.27	No Asbestos Detected	N/A	N/A	239.86	No Asbestos Detected		N/A	100.63	No Asbestos Detected	N/A	N/A	148.56	No	<0.001	<0.001
S007	BH113 2.8	363.91	22.55	No Asbestos Detected	N/A	N/A	135.44	0.014	Free Fibres	100	101.81	0.003	Free Fibres	100%	104.11	Yes	<0.001	0.0055
S008	BH114 0.1	783.91	157.81	No Asbestos Detected	N/A	N/A	307.99	No Asbestos Detected	N/A	N/A	100.65	No Asbestos Detected	N/A	N/A	217.46	No	<0.001	<0.001
S009	BH115 0.1	651.17	17.14	No Asbestos Detected	N/A	N/A	210.81	No Asbestos Detected		N/A	100.65	No Asbestos Detected	N/A	N/A	322.57	No	<0.001	<0.001
S010	BH116 3.2	826.54	144.45	No Asbestos Detected	N/A	N/A	358.36	No Asbestos Detected	N/A	N/A	101.90	No Asbestos Detected	N/A	N/A	221.83	No	<0.001	<0.001

S1810151050 - 4 of 5

Appendix 1: Soil Analysis Raw Data

Certificate Number: S1810151050 Report Date: 19 Oct 2018 Site Location: Kyle Park / 1003207

								Qua	intitative Resu (non IANZ)	ılts								
	Client	Total		ACM (>:	10mm)*		AF /	FA (2-10mr	n) (100% ACN	1)*	AF ,	/ FA (<2mm) (100% ACM)'	k	<2mm	Trace Asbestos	W/W% Asbestos as	W/W% Asbestos
Sample ID	Sample ID	500mL Sub- Sample (g)	>10mm Weight (g)	>10mm ACM (g)	ACM Form	Form %***	2-10mm Weight (g)	2-10mm AF/FA (g)	ACM Form	Form %***	<2mm Weight (g)	<2mm AF/FA (g)	ACM Form	Form %***	Excess (g)	Detected **	ACM	as AF / FA
S011	BH118 0.3	548.18	No Material Present	N/A	N/A	N/A		No Asbestos Detected		N/A	100.11	No Asbestos Detected		N/A	368.98	No	<0.001	<0.001
S012	BH118 2.6	876.55		No Asbestos Detected	N/A	N/A	369.34	0.003	Bitumastic Material	40%	102.77	0.002	Fibrous Material	30%	253.37	Yes	<0.001	<0.001
S013	BH119 1.1	837.21	217.71	No Asbestos Detected	N/A	N/A	360.24	0.006	Fibrous Material	40%	101.87	0.001	Free Fibres	100%	157.39	Yes	<0.001	<0.001
S014	BH120 2.0	700.56	367.75	45.715	Cement Sheet	20%	202.42	13.849	Cement Sheet	20%	101.61	0.150	Cement Sheet	20%	28.78	Yes	1.305	0.4009

* These results are raw weighed data presented as per the BRANZ New Zealand Guidelines for Assessing and Managing Asbestos Soil and may be under the reporting limit for guidelines AS4964 of 0.1g/kg

** Trace asbestos detected is indicative that freely liberated respirable fibres are present and dust control measures should be implemented or increased on site. This is not the sole indicator for the friable nature of the asbestos present.

*** Asbestos percentage is determined using EPA-600-R-93-116: Method for the Determination of Asbestos in Bulk Building Materials and are outside of IANZ accreditation #1097 and is therefore not endorsed by IANZ.

Table E1 - whole site

			Asses	sment criteria													Analytica	il data									
Sample ID		NES Soil S	CS _(health)				BH101 3.45	BH101 7.2	BH101 7.35	BH102 0.5	BH102 2.0	BH102 9.6	BH102 9.8	BH103 0.3	BH103 7.15	BH103 7.4	BH103 10.2	BH103 10.5	BH104 1.0	BH104 1.1	BH104 5.5	BH104 7.7	BH105 0.9	BH105 2.2	BH105 5.1	BH105 6.0	BH106 0
Depth (m bgl)	Units		Outdoor	Burwood ²	Background ³	Maximum	3.45	7.2	7.35	0.5	2.0	9.6	9.8	0.3	7.15	7.4	10.2	10.5	1.0	1.1	5.5	7.7	0.9	2.2	5.1	6.0	0.5
Sample date	011113	Recreational	worker	Burwood	Background	concentration	20/09/2018	20/09/2018	20/09/2018	21/09/2018	21/09/2018	21/09/2018	21/09/2018	21/09/2018	26/09/2018	26/09/2018	26/09/2018	26/09/2018	26/09/2018	26/09/2018	26/09/2018	26/09/2018	27/09/2018	27/09/2018	27/09/2018	27/09/2018	28/09/201
Material type (cap/fill)			worker				Fill	Fill	Fill	Cap	Fill	Fill	Fill	Cap	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Cap
Metals																											
Arsenic	mg/kg	80	70	80	16.3	36	17.8	13.7	-	4.99	-	13.4	-	5.93	-	-	-	9.56	7.16	-	-	30.2	16.5	-	-	8.28	-
Cadmium	mg/kg	400	1,300	400	0.2	5.04	5.04	0.69	-	0.081	-	0.4	-	0.097	-	-	-	3.07	0.89	-	-	2.52	0.29	-	-	0.085	-
Chromium	mg/kg	2,700	6,300	2,700	20.1	45.7	45.7	17.5	-	14.4	-	19	-	15.2	-	-	-	26.1	17.3	-	-	31.6	17.2	-	-	13.5	-
Copper	mg/kg	>10,000	>10,000	>10,000	19.5	270	270	76.9	-	9	-	24.3	-	14.8	-	-	-	27.5	54.5	-	-	108	62.5	-	-	9.53	-
Lead	mg/kg	880	3,300	880	128.8	406	406	166	-	28.8	-	183	-	20.8	-	-	-	77.2	90.2	-	-	281	105	-	-	32.7	-
Mercury	mg/kg	1,800	4,200	1,800	0.1	0.45	0.45	0.42	-	0.06	-	0.29	-	0.044	-	-	-	0.44	0.087	-	-	0.14	0.2	-	-	0.086	-
Nickel	mg/kg	1,200 4	6,000 ⁴	600	18	112	112	31.5	-	11.3	-	16.9	-	11.3	-	-	-	31.5	14.3	-	-	40.2	17.2	-	-	11.4	-
Zinc	mg/kg	30,000 4	400,000 4	14,000	166.8	1300	417	257	-	67.7	-	200	-	64.5	-	-	-	197	1300	-	-	285	126	-	-	113	-
Cyanide	mg/kg	240 ⁴	1,500 ⁴	NGV	NGV	2.58		2.58	-	-	-	-	-	-	-	<0.2	-	-	-	-	-	-	-		-	-	-
Semi-Volatile Organic Compounds																											
Benzo[a]pyrene TEQ (LOR)	mg/kg	40	35	40	0.922 5	100.2	3.3	0.3	-	16.2	-	0.6	-	0.2	-	-	-	0.2	0.2	-	-	0.7	20.7		-	<u>100.2</u>	
Total Phenols	mg/kg	40,000 4	240,000 ⁴	40,000	NGV	0	<12	<12	-	<12	-	<12	-	<12	-	-	-	<12	<12	-	-	<12	<12	-	-	<12	-
Σ DDT	mg/kg	400	1,000	400	0.431 9	7	<0.6	<0.6	-	7	-	<0.6		<0.6	-	-	-	<0.6	<0.6	-	-	<0.6	<0.6	-	-	<0.6	-
Deildrin	mg/kg	70	160	70	NGV	0.7	< 0.5	<0.5	-	<0.5	-	<0.5	-	<0.5	-	-	-	< 0.5	<0.5	-	-	<0.5	0.7	-	-	<0.5	-
Asbestos																											
Asbestos presence/absence		N/A	N/A			0	NAD	-	Chrysotile, Amosite, Crocidolite	-	NAD	-	NAD	-	Chrysotile	-	Chrysotile, Amosite, Crocidolite	-	-	Chrysotile	NAD	-	-	NAD	Chrysotile	-	NAD
Asbestos form		N/A	N/A	Not present	Not present	0	-	-	Insulation board, free fibres	-	-	-	-	-	Free fibres	-	Cement sheet, free fibres	-	-	Free fibres	-	-	-	-	Free fibres	-	-
Weight of asebtos in ACM (non-friable) 6	%w/w	0.02	0.05			0.848	NAD	-	0	-	NAD	-	NAD	-	0	-	0.848	-	-	0	NAD	-	-	NAD	0	-	NAD
Combined FA + AF 6	%w/w	0.001	0.001			0.0134	NAD	-	<u>0.0043</u>	-	NAD	-	NAD	-	<u>0.0043</u>	-	<u>0.0134</u>	-	-	< 0.001	NAD	-	-	NAD	<0.001	-	NAD

		-																											
			Asse	ssment criteria													Analytical data												/
Sample ID		NES Soil S	CS(health)				BH107 0.3	BH107 2.3	BH107 4.3	BH107 4.6	BH109 1.3	BH109 5.2	BH109 5.4	BH109 8.5	BH108 0.85	BH108 2.35	BH108 5.6	BH108 7.8	BH110 0.4	BH110 0.6	BH110 2.5	BH111 0.5	BH111 1.0	BH111 1.95	BH111 3.5	BH112 0.5	BH112 1.0	BH112 9.2	BH113 0.2
Depth (m bgl)	Units		Outdoor	Burwood ²	Background ³	Maximum	0.3	2.3	4.3	4.6	1.3	5.2	5.4	8.5	0.85	2.35	5.6	7.8	0.4	0.6	2.5	0.5	1	1.95	3.5	0.5	1	9.2	0.2
Sample date		Recreational	worker	Burwoou	Background	concentration	28/09/2018	28/09/2018	28/09/2018	28/09/2018	28/09/2018	28/09/2018	28/09/2018	28/09/2018	2/10/2018	2/10/2018	2/10/2018	2/10/2018	1/10/2018	1/10/2018	1/10/2018	8/10/2018	8/10/2018	8/10/2018	8/10/2018	5/10/2018	5/10/2018	5/10/2018	2/10/2018
Material type (cap/fill)			worker				Cap	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Сар	Сар	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Natural	Сар
Metals																													
Arsenic	mg/kg	80	70	80	16.3	73.9	5.99	-	4.98	-		15.1		4.04	8.58	-	4.15	3.76	4.86	-	11.9	-	5.12	-	73.9	-	6.83	4.73	6.05
Cadmium	mg/kg	400	1,300	400	0.2	0.82	0.13	-	0.51	-		0.5		0.033	0.82	-	0.17	0.049	0.1	-	0.069	-	0.13	-	0.23	-	0.11	0.046	0.082
Chromium	mg/kg	2,700	6,300	2,700	20.1	30.3	15.1	-	18.6	-	-	30.3	-	11	17.3	-	21.2	11.1	16.5	-	11.7	-	4.29	-	27.9	-	15.6	15.7	17.5
Copper	mg/kg	>10,000	>10,000	>10,000	19.5	79.8	14.2	-	13.6	-	-	36.4	-	6.33	54.9	-	22.3	9.7	7.96	-	6.14	-	11.3	-	79.8	-	13.9	9.18	10.6
Lead	mg/kg	880	3,300	880	128.8	259	33.5	-	21	-	-	111		15.1	259	-	44.7	11.9	18.1	-	19.9	-	27.5	-	71.7	-	31.8	18.5	28.9
Mercury	mg/kg	1,800	4,200	1,800	0.1	0.75	0.064	-	0.2	-	-	0.12		0.052	0.077	-	0.11	0.75	0.059	-	<0.025	-	0.041	-	0.2	-	0.099	0.092	0.066
Nickel	mg/kg	1,200 4	6,000 ⁴	600	18	45.4	12.6	-	16.6	-	-	33.8	-	9.55	14.5	-	31.2	10.7	13.2	-	7.1	-	4.9	-	45.4	-	12.1	13.1	14.4
Zinc	mg/kg	30,000 ⁴	400,000 4	14,000	166.8	420	74.1	-	371	-		149		45.3	169	-	76.1	57.5	61	-	30.6	-	175	-	420	-	76.3	54.7	73.5
Semi-Volatile Organic Compounds																													
Benzo[a]pyrene TEQ (LOR)	mg/kg	40	35	40	0.922 5	2.5	0.2	-	0.2	-	-	2.5		0.2	0.3	-	0.2	0.2	0.2	-	0.2	-	1.9	-	1	-	0.2	0.2	0.6
Total Phenols	mg/kg	40,000 4	240,000 ⁴	40,000	NGV	25.2	<12	-	25.2	-	-	<12		<12	<12	-	<12	<12	<12	-	<12	-	<12	-	<12	-	<12	<12	<12
Σ DDT	mg/kg	400	1,000	400	0.431 9	0.9	<0.6	-	0.9	-	-	<0.6	-	<0.6	<0.6	-	<0.6	<0.6	<0.6	-	<0.6	-	<0.6	-	<0.6	-	<0.6	<0.6	<0.6
Deildrin	mg/kg	70	160	70	NGV	0	< 0.5	-	<0.5	-	-	<0.5	-	< 0.5	< 0.5	-	<0.5	< 0.5	<0.5	-	< 0.5	-	<0.5	-	< 0.5	-	<0.5	<0.5	<0.5
Total Petroleum Hydrocarbons																													,
C7- C9	mg/kg	500 7	500 ⁸	500	NGV		-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-		<10	
C10- C14	mg/kg	510 7	510 ⁸	510	NGV		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>2,052</u>	
C7- C36	mg/kg	NL 7	NL ⁸	NL	NGV		-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-		6,350	
C7- C36 (total)	mg/kg		-	-	NGV																							8,402	
Asbestos													-																
Asbestos presence/absence		N/A	N/A			N/A	-	Chrysotile	-	Chrysotile	NAD	-	NAD	-	-	Chrysotile, Amosite, Crocidolite	-	-	-	Chrysotile, Amosite, Crocidolite	-	Chrysotile, Amosite, Crocidolite	-	Chrysotile, Amosite, Crocidolite	-	NAD	-	-	-
Asbestos form		N/A	N/A	Not present	Not present	N/A		Bitumastic material, free fibres	-	Cement sheet, free fibres		-		-	-	Cement sheet, free fibres	-	-	-	Free fibres	-	Cement sheet, free fibres	-	Cement sheet	-	-	-	-	-
Weight of asebtos in ACM (non-friable) 6	%w/w	0.02	0.05			3.437	•	0	-	0	NAD	-	NAD	-	-	<u>3.437</u>	-	-	-	0	-	<u>0.101</u>	-	<u>2.991</u>	-	NAD	-		-
Combined FA + AF 6	%w/w	0.001	0.001			6.7374	-	<u>0.0067</u>	-	0.0235	NAD	-	NAD	-	-	<u>6.7374</u>	-	-	-	0.0069	-	<u>0.0704</u>	-	<u>0.2317</u>	-	NAD	-	-	-

	1		Asses	sment criteria		1											Analytical data												
Sample ID		NES Soil	SCS _(health) ¹				BH113 2.5	BH113 2.8	BH114 0.1	BH114 0.2	BH114 4.1	BH115 0.1	BH115 1.6	BH115 6.2	BH116 0.7	BH116 3.2	BH116 5.6	BH117 0.5	BH117 2.4	BH118 0.3	BH118 0.75	BH118 2.6	BH118 6.3	BH119 1.0	BH119 1.1	BH119 6.3	BH120 0.8	BH120 2.0	BH120 3.8
Depth (m bgl)	Units		1	- 1 ²	a. 13	Maximum	2.5	2.8	0.1	0.2	4.1	0.1	1.6	6.2	0.7	3.2	5.6	0.5	2.4	0.3	0.75	2.6	6.30	1.0	1.1	6.3	0.8	2.0	3.8
Sample date	Units	Recreational	Outdoor	Burwood ²	Background ³	concentration	2/10/2018	2/10/2018	3/10/2018	3/10/2018	3/10/2018	8/10/2018	8/10/2018	8/10/2018	8/10/2018	8/10/2018	8/10/2018	9/10/2018	9/10/2018	9/10/2018	9/10/2018	9/10/2018	9/10/2018	10/10/2018	10/10/2018	10/10/2018	9/10/2018	9/10/2018	9/10/2018
Material type (cap/fill)			worker				Fill	Fill	Cap	Сар	Fill	Сар	Fill	Natural	Cap	Fill	Fill	Сар	Fill	Сар	Cap	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill
Metals							-																						
Arsenic	mg/kg	80	70	80	16.3	61.9	6.82		-	5.61	13.7	-	5.97	2.36	5	-	27.8	4.08	25	-	5.06	-	14.9	61.9	-	39.9	8.45	-	44.2
Cadmium	mg/kg	400	1,300	400	0.2	375	0.13	-	-	0.15	0.29	-	0.094	0.034	0.12	-	0.26	0.057	375	-	0.28	-	26.6	0.14	-	0.14	0.2	-	0.41
Chromium	mg/kg	2,700	6,300	2,700	20.1	117	16.5	-	-	16.1	28.3	-	17.9	12.6	14.1	-	20.5	13.7	40.7	-	14.2	-	117	15.4	-	16.5	12.5	-	18.8
Copper	mg/kg	>10,000	>10,000	>10,000	19.5	159	14	-	-	24.2	159	-	9.84	5.72	26.1	-	51.4	7.95	129	-	15.9	-	24.8	15.4	-	15.3	20.7	-	16.4
Lead	mg/kg	880	3,300	880	128.8	3890	45.6	-	-	48.6	56.4	-	28.8	11.3	48.3	-	33.6	38.1	<u>3890</u>	-	71.3	-	160	33.1	-	151	126	-	87.8
Mercury	mg/kg	1,800	4,200	1,800	0.1	5.2	0.061	-	-	0.065	0.19	-	0.045	0.055	0.063	-	0.068	0.046	5.2	-	0.1	-	0.43	0.077	-	0.13	0.097	-	0.32
Nickel	mg/kg	1,200 4	6,000 ⁴	600	18	63.1	12.3	-	-	14.3	41.9	-	13.3	9.58	11.4	-	39.3	11.3	63.1	-	11.2	-	34.3	11.2	-	11.1	10.2	1 - 1	10.5
Zinc	mg/kg	30,000 ⁴	400,000 4	14,000	166.8	315	82.2	-	-	105	105	-	71.1	37.4	78.5	-	64.2	51.5	229	-	68	-	315	74.1		163	84.7	-	117
Semi-Volatile Organic Compounds																													
Benzo[a]pyrene TEQ (LOR)	mg/kg	40	35	40	0.922 5	127	0.3	-	-	0.3	0.2	-	0.9	0.2	1.3	-	1.2	0.2	1.7	-	3.3		0.8	0.3		20.9	<u>127</u>	-	1.4
Total Phenols	mg/kg	40,000 4	240,000 4	40,000	NGV	0	<12	-	-	<12	<12	-	<12	<12	<12	-	<12	<12	<12	-	<12	-	<12	<12	-	<12	<12	-	<12
Σ DDT	mg/kg	400	1,000	400	0.431 9	9.4		-	-	<0.6	<0.6	-	<0.6	<0.6	<0.6	-	1.5	<0.6	0.5	-	<0.6	-	9.4	<0.6	-	<0.6	<0.6	-	<0.6
Deildrin	mg/kg	70	160	70	NGV	0	< 0.5	-	-	<0.5	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	-	< 0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Asbestos																													
Asbestos presence/absence		N/A	N/A			N/A	-	Chrysotile, Amosite	NAD	-	-	NAD		-	-	NAD	-	-	NAD	NAD	-	Chrysotile	-	-	Chrysotile, Amosite, Crocidolite	-	-	Chrysotile, Amosite, Crocidolite	-
Asbestos form		N/A	N/A	Not present	Not present	N/A	-	Free fibres	-	-	-	-		-	-	-	-	-	-	-	-	Bitumastic material, fibrous material	-	-	Fibrous material, free fibres	-	-	Cement sheet	-
Weight of asebtos in ACM (non-friable) 6	%w/w	0.02	0.05			1.305	· ·	0	NAD	-	-	NAD	-	-	-	NAD	-	-	NAD	NAD	-	0	-	-	0	-	-	<u>1.305</u>	-
Combined FA + AF 6	%w/w	0.001	0.001			0.4009		0.0055	NAD	-	-	NAD	-	-	-	NAD	-	-	NAD	NAD	-	<0.001	-		<0.001	-		0.4009	-

Notes: Bold indicates that published background concentrations are exceeded. Red indicates that outdoor worker health criteria are exceeded. Underling indicates that recreational land use criteria are exceeded. Highlighted indicates that Burwood acceptance criteria are exceeded. - indicates sample has not been analysed. NAD indicates No Asbetso Detected. NGV indicates No Guideline Value. N/A indicates Not Applicable.

ME, 2012 - National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health (unless otherwise stated).
 Burwood Resource Recovery Park acceptance criteria, pers. comms. M Morely (CCC), 16.03.2011 and updated with the NES recreational criteria as he instructed in January 2012.
 Ecan GIS, Trace elements Level 2 from "Background concentrations of selected trace elements in Canterbury soils" prepared for Environment Canterbury by Tonkin and Taylor Ltd, July 2006.
 ACS NERM Toolbox - Update Febrary 2014 - www.nepc.gov.au/nepms/assessment-site-contamination/toolbox.
 Ecan 2007, Background concentrations of polycyclic aromatic hydrocarbons in Christchurch urban soils.
 BRANZ 2017, New Zealand Guidelines for Assessing and Managing Atbestos in Soil; ACM - asbetsos contaning material, AF- asbetsos fines, FA- fibrous asbestos.
 ME, June 1999, Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand. Tier 1 Soil ac ceptance criteria: commercial/ industrial use, sandy silt, <1 m.Residential is used on a conservative basis
 ME, June 1999. Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand. Tier 1 Soil ac ceptance criteria: residential use, sandy silt, <1 m.

0.5	BH106 2.3	BH106 6.3	BH106 7.5
	2.3	6.3	7.5
018	28/09/2018	28/09/2018	28/09/2018
	Fill	Fill	Fill
	10.4	-	36
	0.2	-	0.32
	31.7	-	24.4
	61.5	-	29.4
	137	-	65.4
	0.077	-	0.35
	22.4	-	23.4
	109	-	143
	-	-	-
	8.5	-	0.3
	<12	-	<12
	<0.6	-	<0.6
	<0.5	-	<0.5
,		NAD	
	-	-	-
)	-	NAD	-
)	-	NAD	-

Table E1 - whole site

			Asses	sment criteria													Analytica	il data									
Sample ID		NES Soil S	CS _(health)				BH101 3.45	BH101 7.2	BH101 7.35	BH102 0.5	BH102 2.0	BH102 9.6	BH102 9.8	BH103 0.3	BH103 7.15	BH103 7.4	BH103 10.2	BH103 10.5	BH104 1.0	BH104 1.1	BH104 5.5	BH104 7.7	BH105 0.9	BH105 2.2	BH105 5.1	BH105 6.0	BH106 0
Depth (m bgl)	Units		Outdoor	Burwood ²	Background ³	Maximum	3.45	7.2	7.35	0.5	2.0	9.6	9.8	0.3	7.15	7.4	10.2	10.5	1.0	1.1	5.5	7.7	0.9	2.2	5.1	6.0	0.5
Sample date	011113	Recreational	worker	Burwood	Background	concentration	20/09/2018	20/09/2018	20/09/2018	21/09/2018	21/09/2018	21/09/2018	21/09/2018	21/09/2018	26/09/2018	26/09/2018	26/09/2018	26/09/2018	26/09/2018	26/09/2018	26/09/2018	26/09/2018	27/09/2018	27/09/2018	27/09/2018	27/09/2018	28/09/201
Material type (cap/fill)			worker				Fill	Fill	Fill	Cap	Fill	Fill	Fill	Cap	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Cap
Metals																											
Arsenic	mg/kg	80	70	80	16.3	36	17.8	13.7	-	4.99	-	13.4	-	5.93	-	-	-	9.56	7.16	-	-	30.2	16.5	-	-	8.28	-
Cadmium	mg/kg	400	1,300	400	0.2	5.04	5.04	0.69	-	0.081	-	0.4	-	0.097	-	-	-	3.07	0.89	-	-	2.52	0.29	-	-	0.085	-
Chromium	mg/kg	2,700	6,300	2,700	20.1	45.7	45.7	17.5	-	14.4	-	19	-	15.2	-	-	-	26.1	17.3	-	-	31.6	17.2	-	-	13.5	-
Copper	mg/kg	>10,000	>10,000	>10,000	19.5	270	270	76.9	-	9	-	24.3	-	14.8	-	-	-	27.5	54.5	-	-	108	62.5	-	-	9.53	-
Lead	mg/kg	880	3,300	880	128.8	406	406	166	-	28.8	-	183	-	20.8	-	-	-	77.2	90.2	-	-	281	105	-	-	32.7	-
Mercury	mg/kg	1,800	4,200	1,800	0.1	0.45	0.45	0.42	-	0.06	-	0.29	-	0.044	-	-	-	0.44	0.087	-	-	0.14	0.2	-	-	0.086	-
Nickel	mg/kg	1,200 4	6,000 ⁴	600	18	112	112	31.5	-	11.3	-	16.9	-	11.3	-	-	-	31.5	14.3	-	-	40.2	17.2	-	-	11.4	-
Zinc	mg/kg	30,000 4	400,000 4	14,000	166.8	1300	417	257	-	67.7	-	200	-	64.5	-	-	-	197	1300	-	-	285	126	-	-	113	-
Cyanide	mg/kg	240 ⁴	1,500 ⁴	NGV	NGV	2.58		2.58	-	-	-	-	-	-	-	<0.2	-	-	-	-	-	-	-		-	-	-
Semi-Volatile Organic Compounds																											
Benzo[a]pyrene TEQ (LOR)	mg/kg	40	35	40	0.922 5	100.2	3.3	0.3	-	16.2	-	0.6	-	0.2	-	-	-	0.2	0.2	-	-	0.7	20.7		-	<u>100.2</u>	
Total Phenols	mg/kg	40,000 4	240,000 ⁴	40,000	NGV	0	<12	<12	-	<12	-	<12	-	<12	-	-	-	<12	<12	-	-	<12	<12	-	-	<12	-
Σ DDT	mg/kg	400	1,000	400	0.431 9	7	<0.6	<0.6	-	7	-	<0.6		<0.6	-	-	-	<0.6	<0.6	-	-	<0.6	<0.6	-	-	<0.6	-
Deildrin	mg/kg	70	160	70	NGV	0.7	< 0.5	<0.5	-	<0.5	-	<0.5	-	<0.5	-	-	-	< 0.5	<0.5	-	-	<0.5	0.7	-	-	<0.5	-
Asbestos																											
Asbestos presence/absence		N/A	N/A			0	NAD	-	Chrysotile, Amosite, Crocidolite	-	NAD	-	NAD	-	Chrysotile	-	Chrysotile, Amosite, Crocidolite	-	-	Chrysotile	NAD	-	-	NAD	Chrysotile	-	NAD
Asbestos form		N/A	N/A	Not present	Not present	0	-	-	Insulation board, free fibres	-	-	-	-	-	Free fibres	-	Cement sheet, free fibres	-	-	Free fibres	-	-	-	-	Free fibres	-	-
Weight of asebtos in ACM (non-friable) 6	%w/w	0.02	0.05			0.848	NAD	-	0	-	NAD	-	NAD	-	0	-	0.848	-	-	0	NAD	-	-	NAD	0	-	NAD
Combined FA + AF 6	%w/w	0.001	0.001			0.0134	NAD	-	<u>0.0043</u>	-	NAD	-	NAD	-	<u>0.0043</u>	-	<u>0.0134</u>	-	-	< 0.001	NAD	-	-	NAD	<0.001	-	NAD

		-																											
			Asse	ssment criteria													Analytical data												/
Sample ID		NES Soil S	CS(health)				BH107 0.3	BH107 2.3	BH107 4.3	BH107 4.6	BH109 1.3	BH109 5.2	BH109 5.4	BH109 8.5	BH108 0.85	BH108 2.35	BH108 5.6	BH108 7.8	BH110 0.4	BH110 0.6	BH110 2.5	BH111 0.5	BH111 1.0	BH111 1.95	BH111 3.5	BH112 0.5	BH112 1.0	BH112 9.2	BH113 0.2
Depth (m bgl)	Units		Outdoor	Burwood ²	Background ³	Maximum	0.3	2.3	4.3	4.6	1.3	5.2	5.4	8.5	0.85	2.35	5.6	7.8	0.4	0.6	2.5	0.5	1	1.95	3.5	0.5	1	9.2	0.2
Sample date		Recreational	worker	Burwoou	Background	concentration	28/09/2018	28/09/2018	28/09/2018	28/09/2018	28/09/2018	28/09/2018	28/09/2018	28/09/2018	2/10/2018	2/10/2018	2/10/2018	2/10/2018	1/10/2018	1/10/2018	1/10/2018	8/10/2018	8/10/2018	8/10/2018	8/10/2018	5/10/2018	5/10/2018	5/10/2018	2/10/2018
Material type (cap/fill)			worker				Cap	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Сар	Сар	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Natural	Сар
Metals																													
Arsenic	mg/kg	80	70	80	16.3	73.9	5.99	-	4.98	-		15.1		4.04	8.58	-	4.15	3.76	4.86	-	11.9	-	5.12	-	73.9	-	6.83	4.73	6.05
Cadmium	mg/kg	400	1,300	400	0.2	0.82	0.13	-	0.51	-		0.5		0.033	0.82	-	0.17	0.049	0.1	-	0.069	-	0.13	-	0.23	-	0.11	0.046	0.082
Chromium	mg/kg	2,700	6,300	2,700	20.1	30.3	15.1	-	18.6	-	-	30.3	-	11	17.3	-	21.2	11.1	16.5	-	11.7	-	4.29	-	27.9	-	15.6	15.7	17.5
Copper	mg/kg	>10,000	>10,000	>10,000	19.5	79.8	14.2	-	13.6	-	-	36.4	-	6.33	54.9	-	22.3	9.7	7.96	-	6.14	-	11.3	-	79.8	-	13.9	9.18	10.6
Lead	mg/kg	880	3,300	880	128.8	259	33.5	-	21	-		111		15.1	259	-	44.7	11.9	18.1	-	19.9	-	27.5	-	71.7	-	31.8	18.5	28.9
Mercury	mg/kg	1,800	4,200	1,800	0.1	0.75	0.064	-	0.2	-		0.12		0.052	0.077	-	0.11	0.75	0.059	-	<0.025	-	0.041	-	0.2	-	0.099	0.092	0.066
Nickel	mg/kg	1,200 4	6,000 ⁴	600	18	45.4	12.6	-	16.6	-	-	33.8	-	9.55	14.5	-	31.2	10.7	13.2	-	7.1	-	4.9	-	45.4	-	12.1	13.1	14.4
Zinc	mg/kg	30,000 ⁴	400,000 4	14,000	166.8	420	74.1	-	371	-		149		45.3	169	-	76.1	57.5	61	-	30.6	-	175	-	420	-	76.3	54.7	73.5
Semi-Volatile Organic Compounds																													
Benzo[a]pyrene TEQ (LOR)	mg/kg	40	35	40	0.922 5	2.5	0.2	-	0.2	-	-	2.5		0.2	0.3	-	0.2	0.2	0.2	-	0.2	-	1.9	-	1	-	0.2	0.2	0.6
Total Phenols	mg/kg	40,000 4	240,000 ⁴	40,000	NGV	25.2	<12	-	25.2	-	-	<12		<12	<12	-	<12	<12	<12	-	<12	-	<12	-	<12	-	<12	<12	<12
Σ DDT	mg/kg	400	1,000	400	0.431 9	0.9	<0.6	-	0.9	-	-	<0.6	-	<0.6	<0.6	-	<0.6	<0.6	<0.6	-	<0.6	-	<0.6	-	<0.6	-	<0.6	<0.6	<0.6
Deildrin	mg/kg	70	160	70	NGV	0	< 0.5	-	<0.5	-	-	<0.5	-	< 0.5	< 0.5	-	<0.5	< 0.5	< 0.5	-	< 0.5	-	<0.5	-	< 0.5	-	<0.5	<0.5	<0.5
Total Petroleum Hydrocarbons																													,
C7- C9	mg/kg	500 7	500 ⁸	500	NGV		-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-		<10	
C10- C14	mg/kg	510 7	510 ⁸	510	NGV		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u>2,052</u>	
C7- C36	mg/kg	NL 7	NL ⁸	NL	NGV		-	-	-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-		6,350	
C7- C36 (total)	mg/kg		-	-	NGV																							8,402	
Asbestos													-																
Asbestos presence/absence		N/A	N/A			N/A	-	Chrysotile	-	Chrysotile	NAD	-	NAD	-	-	Chrysotile, Amosite, Crocidolite	-	-	-	Chrysotile, Amosite, Crocidolite	-	Chrysotile, Amosite, Crocidolite	-	Chrysotile, Amosite, Crocidolite	-	NAD	-	-	-
Asbestos form		N/A	N/A	Not present	Not present	N/A		Bitumastic material, free fibres	-	Cement sheet, free fibres		-		-	-	Cement sheet, free fibres	-	-	-	Free fibres	-	Cement sheet, free fibres	-	Cement sheet	-	-	-	-	-
Weight of asebtos in ACM (non-friable) 6	%w/w	0.02	0.05			3.437	•	0	-	0	NAD	-	NAD	-	-	<u>3.437</u>	-	-	-	0	-	<u>0.101</u>	-	<u>2.991</u>	-	NAD	-		-
Combined FA + AF 6	%w/w	0.001	0.001			6.7374	-	<u>0.0067</u>	-	0.0235	NAD	-	NAD	-	-	<u>6.7374</u>	-	-	-	0.0069	-	<u>0.0704</u>	-	<u>0.2317</u>	-	NAD	-	-	-

	1		Asse	sment criteria		1											Analytical data												
Sample ID		NES Soil	SCS _(health) ¹				BH113 2.5	BH113 2.8	BH114 0.1	BH114 0.2	BH114 4.1	BH115 0.1	BH115 1.6	BH115 6.2	BH116 0.7	BH116 3.2	BH116 5.6	BH117 0.5	BH117 2.4	BH118 0.3	BH118 0.75	BH118 2.6	BH118 6.3	BH119 1.0	BH119 1.1	BH119 6.3	BH120 0.8	BH120 2.0	BH120 3.8
Depth (m bgl)	Units		1	- 1 ²	a. 13	Maximum	2.5	2.8	0.1	0.2	4.1	0.1	1.6	6.2	0.7	3.2	5.6	0.5	2.4	0.3	0.75	2.6	6.30	1.0	1.1	6.3	0.8	2.0	3.8
Sample date	Units	Recreational	Outdoor	Burwood ²	Background ³	concentration	2/10/2018	2/10/2018	3/10/2018	3/10/2018	3/10/2018	8/10/2018	8/10/2018	8/10/2018	8/10/2018	8/10/2018	8/10/2018	9/10/2018	9/10/2018	9/10/2018	9/10/2018	9/10/2018	9/10/2018	10/10/2018	10/10/2018	10/10/2018	9/10/2018	9/10/2018	9/10/2018
Material type (cap/fill)			worker			/	Fill	Fill	Cap	Сар	Fill	Сар	Fill	Natural	Cap	Fill	Fill	Сар	Fill	Сар	Cap	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill
Metals							-																						
Arsenic	mg/kg	80	70	80	16.3	61.9	6.82	-	-	5.61	13.7	-	5.97	2.36	5	-	27.8	4.08	25	-	5.06	-	14.9	61.9	-	39.9	8.45		44.2
Cadmium	mg/kg	400	1,300	400	0.2	375	0.13	-	-	0.15	0.29	-	0.094	0.034	0.12	-	0.26	0.057	375	-	0.28	-	26.6	0.14	-	0.14	0.2		0.41
Chromium	mg/kg	2,700	6,300	2,700	20.1	117	16.5	-	-	16.1	28.3	-	17.9	12.6	14.1	-	20.5	13.7	40.7	-	14.2	-	117	15.4	-	16.5	12.5	-	18.8
Copper	mg/kg	>10,000	>10,000	>10,000	19.5	159	14	-	-	24.2	159	-	9.84	5.72	26.1	-	51.4	7.95	129	-	15.9	-	24.8	15.4	-	15.3	20.7	-	16.4
Lead	mg/kg	880	3,300	880	128.8	3890	45.6	-	-	48.6	56.4	-	28.8	11.3	48.3	-	33.6	38.1	<u>3890</u>	-	71.3	-	160	33.1	-	151	126		87.8
Mercury	mg/kg	1,800	4,200	1,800	0.1	5.2	0.061	-	-	0.065	0.19	-	0.045	0.055	0.063	-	0.068	0.046	5.2	-	0.1	-	0.43	0.077	-	0.13	0.097		0.32
Nickel	mg/kg	1,200 4	6,000 ⁴	600	18	63.1	12.3	-	-	14.3	41.9	-	13.3	9.58	11.4	-	39.3	11.3	63.1	-	11.2	-	34.3	11.2	-	11.1	10.2	- I	10.5
Zinc	mg/kg	30,000 ⁴	400,000 4	14,000	166.8	315	82.2	-	-	105	105		71.1	37.4	78.5	-	64.2	51.5	229	-	68	-	315	74.1		163	84.7	-	117
Semi-Volatile Organic Compounds																													
Benzo[a]pyrene TEQ (LOR)	mg/kg	40	35	40	0.922 5	127	0.3	-	-	0.3	0.2		0.9	0.2	1.3		1.2	0.2	1.7	-	3.3	-	0.8	0.3		20.9	<u>127</u>	-	1.4
Total Phenols	mg/kg	40,000 4	240,000 4	40,000	NGV	0	<12	-	-	<12	<12	-	<12	<12	<12	-	<12	<12	<12	-	<12	-	<12	<12	-	<12	<12	-	<12
Σ DDT	mg/kg	400	1,000	400	0.431 9	9.4		-	-	<0.6	<0.6	-	<0.6	<0.6	<0.6	-	1.5	<0.6	0.5	-	<0.6	-	9.4	<0.6	-	<0.6	<0.6	-	<0.6
Deildrin	mg/kg	70	160	70	NGV	0	< 0.5	-	-	<0.5	<0.5	-	<0.5	< 0.5	<0.5	-	<0.5	<0.5	<0.5	-	< 0.5	-	<0.5	<0.5	-	<0.5	<0.5	-	<0.5
Asbestos																													
Asbestos presence/absence		N/A	N/A			N/A	-	Chrysotile, Amosite	NAD	-	-	NAD	-	-	-	NAD	-	-	NAD	NAD	-	Chrysotile	-	-	Chrysotile, Amosite, Crocidolite	-	-	Chrysotile, Amosite, Crocidolite	-
Asbestos form		N/A	N/A	Not present	Not present	N/A	-	Free fibres	-	-	-	-	-	-	-	-	-	-	-	-	-	Bitumastic material, fibrous material	-	-	Fibrous material, free fibres	-	-	Cement sheet	-
Weight of asebtos in ACM (non-friable) 6	%w/w	0.02	0.05			1.305		0	NAD	-	-	NAD	-	-		NAD	-	-	NAD	NAD	-	0	-	-	0	-	-	<u>1.305</u>	-
Combined FA + AF 6	%w/w	0.001	0.001			0.4009		0.0055	NAD	-	-	NAD	-	-	-	NAD	-	-	NAD	NAD	-	<0.001	-	-	<0.001	-]	0.4009	

Notes: Bold indicates that published background concentrations are exceeded. Red indicates that outdoor worker health criteria are exceeded. Underling indicates that recreational land use criteria are exceeded. Highlighted indicates that Burwood acceptance criteria are exceeded. - indicates sample has not been analysed. NAD indicates No Asbetso Detected. NGV indicates No Guideline Value. N/A indicates Not Applicable.

ME, 2012 - National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health (unless otherwise stated).
 Burwood Resource Recovery Park acceptance criteria, pers. comms. M Morely (CCC), 16.03.2011 and updated with the NES recreational criteria as he instructed in January 2012.
 Ecan GIS, Trace elements Level 2 from "Background concentrations of selected trace elements in Canterbury soils" prepared for Environment Canterbury by Tonkin and Taylor Ltd, July 2006.
 ACS NERM Toolbox - Update Febrary 2014 - www.nepc.gov.au/nepms/assessment-site-contamination/toolbox.
 Ecan 2007, Background concentrations of polycyclic aromatic hydrocarbons in Christchurch urban soils.
 BRANZ 2017, New Zealand Guidelines for Assessing and Managing Atbestos in Soil; ACM - asbetsos contaning material, AF- asbetsos fines, FA- fibrous asbestos.
 ME, June 1999, Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand. Tier 1 Soil ac ceptance criteria: commercial/ industrial use, sandy silt, <1 m.Residential is used on a conservative basis
 ME, June 1999. Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand. Tier 1 Soil ac ceptance criteria: residential use, sandy silt, <1 m.

0.5	BH106 2.3	BH106 6.3	BH106 7.5									
	2.3	6.3	7.5									
018	28/09/2018	28/09/2018	28/09/2018									
	Fill	Fill	Fill									
	10.4	-	36									
	0.2	-	0.32									
	31.7	-	24.4									
	61.5	-	29.4									
	137	-	65.4									
	0.077	-	0.35									
	22.4	-	23.4									
	109	-	143									
	-	-	-									
	8.5	-	0.3									
	<12	-	<12									
	<0.6	-	<0.6									
	<0.5	-	<0.5									
,		NAD										
	-	-	-									
)	-	NAD	-									
)	-	NAD	-									

	+ + + + + +
	+ + + + + +
	+ + + + + +
	+ + + + + +
	+ + + + + + +
	+ + + + + +
	+ + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	+ + + + + +
	+ + + + + + +
	+ + + + + +
	+ + + + + + +
	+ + + + + +
	+ + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ $+$ $+$ $+$ $+$ $+$
	+ $+$ $+$ $+$ $+$ $+$
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ $+$ $+$ $+$ $+$ $+$
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ $+$ $+$ $+$ $+$ $+$
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	+ + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ $+$ $+$ $+$ $+$ $+$
	+ + + + + + +
	+ + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
	+ + + + + + +
www.tonkintaylor.co.nz	+ + + + + + +
	+ + + + + + +
	+ + + + + +

+ + +

+ +